
Community Advisory Committee Item 11 Enclosure 1 November 19, 2025

Congestion Management Program **2025**

Draft Report: November 2025

Chapter 1

Background and Program Overview

KEY TOPICS

- CMP Background
- Legislative Requirements, Intent, and Application to San Francisco
- Congestion Management in San Francisco

1.1 Background

1.1.1 Purpose of the CMP

As the Congestion Management Agency (CMA) for San Francisco, the San Francisco County Transportation Authority (the Transportation Authority) is responsible for preparing a Congestion Management Program (CMP) update biennially. As mandated by state law, the purposes of the CMP are to:

- Define San Francisco's performance measures for congestion management;
- Report congestion monitoring data for San Francisco county to the public and the Metropolitan Transportation Commission (MTC);
- Describe San Francisco's congestion management strategies and efforts; and
- Outline the congestion management work program for the two upcoming fiscal years.

1.1.2 Organization and Approach

This document follows MTC's Guidance for Consistency of Congestion Management Programs with the Regional Transportation Plan, per MTC Resolution 3000.

Each element required by the CMP legislation is discussed in a separate chapter. Each chapter describes the element's context in San Francisco, the work plan, and implementation guidance. The Transportation Authority Board will adopt any revisions developed during the two upcoming fiscal years as amendments to the current cycle San Francisco CMP.

In preparing the CMP update, the Transportation Authority has consulted with the San Francisco Municipal Transportation Agency (SFMTA) and other partner agencies to update policies and compile system performance data.

1.1.3 Origins and Intent of the CMP Legislation

CMP requirements were established in 1989 as part of a bi-partisan state legislative package, known as the Katz-Kopp-Baker-Campbell Transportation Blueprint for the Twenty-First Century (AB 471). These requirements became effective when voters approved Proposition 111 on June 5, 1990. AB 1963 (Katz) in September 1994 and AB 2419 (Bowler) in July 1996 further modified CMP law. The passage of AB 298 (Rainey), effective January 1, 1997, made the CMP exempt from the California Environmental Quality

Act (CEQA). SB 1636 (Figueroa 2002) amended CMP requirements to allow local jurisdictions to designate Infill Opportunity Zones (IOZs). SB 743 (Steinberg 2013) further revises the definition of "IOZ" to generally encompass a larger area than that allowed in SB 1636.

The 1989 state legislation directs the regional agency (MTC) to not program any surface transportation program funds and congestion mitigation and air quality funds for a project in a local jurisdiction that has been found to be in nonconformance with a congestion management program unless the project is found to be of regional significance. The goal of the legislation is to strengthen and coordinate local transportation funding and land use decisions by requiring preparation of long-range countywide transportation every four years, and monitoring of local transportation conditions every two years.

The CMP legislation aims to increase the productivity of existing transportation infrastructure and encourage more efficient use of scarce new dollars for transportation investments, in order to effectively manage congestion, improve air quality, and ultimately allow continued development. To achieve this, the CMP law is based on five mandates:

- Require more coordination between federal, state, regional, and local agencies involved in the planning, programming, and delivery of transportation projects and services;
- Favor transportation investments that provide measurable and quick congestion relief;
- Link local land use decisions with their effect on the transportation system;
- Favor multimodal transportation solutions that improve air quality; and
- Emphasize local responsibility by requiring a Congestion Management Agency (CMA) in each urban county in the state.

1.3 Legislative Requirements, Intent, and Application to San Francisco

The Congestion Management Program is prepared pursuant to the requirements in California Government Code section 65088–65089.10. One of the main objectives of the CMP legislation is to foster coordination of local land use and transportation investment decisions at the county or subregional level. To ensure local involvement in this process the CMP law vests significant authority and responsibility in the Congestion Management Agencies (CMAs). CMAs therefore act as a policy forum and technical resource to guide and help coordinate local and regional congestion management efforts.

1.4 Congestion Management in San Francisco

1.4.1 Applicability of the Concept

By statute, congestion management agencies must report on the roadway level of service (LOS) for its countywide network of regionally significant streets and highways (the Metropolitan Transportation System) outside of an infill opportunity zone (IOZ). However, SB 1636 enabled congestion management agencies to consider alternative metrics to LOS

for measuring and mitigating roadway congestion within IOZs. To better align San Francisco's CMP with its longstanding Transit First policy, San Francisco designated an IOZ in 2009 and, pursuant to SB 743 which expanded IOZ criteria, expanded the IOZ designation in 2024. Also pursuant to SB743, in 2016, the San Francisco Planning Commission formally replaced LOS with Vehicle Miles Traveled (VMT) as San Francisco's measure of local traffic impacts under CEQA.

1.4.2 Mandated Program Components

The following statutory requirements of CMP legislation are mandated for all urban counties in the state:

- 1. A CMP updated biennially. The CMP must contain the following:
- A designated CMP roadway network
- A multimodal performance element that includes traffic level-of-service (LOS) standards and a methodology for monitoring LOS on the designated CMP roadway network, as well as transit service standards
- A travel demand element that promotes alternative transportation methods
- A land use impact analysis methodology
- A seven-year multimodal Capital Improvement Program (CIP);
- 2. A common database and method to analyze impacts of local land use decisions on the CMP network; and
- 3. A designated CMA for the county.

1.4.3 Key Changes from the 2023 CMP

The following sections highlight the most significant updates included in the 2025 CMP.

Infill Opportunity Zone (IOZ) update: The Board of Supervisors passed a resolution in September 2024 updating the area designated as an IOZ in San Francisco to an area that is on the whole larger than the previously designated (in 2009) IOZ. This IOZ update is reflected throughout the report.

Chapter 4: This chapter presents the latest multimodal performance monitoring data along with updated long-term trends.

Chapter 5: The Transportation Demand Management (TDM) Element has been updated to reflect recent changes to planning code requirements, advancements to San Francisco TDM strategies, including new policies requiring TDM measures.

Chapter 7: This chapter reflects amendments made to the CIP.

Chapter 8: The Transportation Authority's San Francisco Travel Demand Forecasting Model has undergone improvements since 2023, which are discussed in this chapter.

Appendix 2: Removed former Appendix 2: Infill Opportunity Zone resolution and replaced with a link to the resolution in the Bibliography

Appendix 5: Removed former Appendix 5: Transit Frequency and Coverage Service Levels and replaced with links to transit agency standards in the Bibliography.

1.4.4 Public Input

The Draft 2025 San Francisco CMP has undergone public review at the November 19, 2025 meeting of the Transportation Authority's Citizens Advisory Committee. The Transportation Authority Board also approved the 2025 CMP on December 9 and 16, 2025.

Chapter 2

Congestion Management Agency Role & Responsibilities

KEY TOPICS

• San Francisco County Transportation Authority

2.1 The San Francisco County Transportation Authority

2.1.1 Designation and Composition

On November 6, 1990, the Board of Supervisors designated the San Francisco County Transportation Authority (the Transportation Authority) as the CMA for the County. The Transportation Authority Board of Commissioners consists of the eleven members of the San Francisco Board of Supervisors, acting as Transportation Authority Commissioners.

2.1.2 Roles and Responsibilities

The Transportation Authority is a special-purpose government agency, created on November 7, 1989, when San Francisco voters passed Proposition B. Proposition B increased the local sales tax by ½ cent for a period of 20 years, to fund San Francisco transportation projects and services. Prop B was superseded by Prop K in 2003, which is in turn superseded by Prop L in 2022, which extends the ½ cent sales tax for 30 years. The Transportation Authority administers, prioritizes, and programs Proposition L revenues. These revenues also leverage large amounts of State and Federal funds for transportation investments in San Francisco.

On November 2, 2010 San Francisco voters approved Proposition AA, authorizing collection of an additional \$10 fee annually on motor vehicles registered in San Francisco and approving an Expenditure Plan for the new funds. The fee funds local street repair, improvements to pedestrian and bicycle conditions, and public transit enhancements. As with Prop L, the Transportation Authority administers, prioritizes, and programs Prop AA funds.

The Proposition D Traffic Congestion Mitigation Tax was passed by San Francisco voters in November 2019. The measure is a surcharge on commercial ride-hail trips, including those provided by autonomous vehicles, that originate in San Francisco, for the portion of the trip within the city. The TNC Tax program seeks to mitigate the effects of increased congestion due to ride-hail trips by directing funds to deliver improvements to transit reliability and safety on San Francisco's roadways.

In its capacity as the CMA for San Francisco, the Transportation Authority has primary responsibilities in the following areas:

- Develop and adopt the biennial CMP and related implementation guidance;
- Monitor City agencies' compliance with CMP requirements;
- Program Federal, State, and regional transportation funds;
- Review the programming of all transportation funds for San Francisco;

- Provide policy input into the regional transportation planning and programming process; and
- Develop and periodically update the long-range countywide transportation plan, the San Francisco Transportation Plan (SFTP), for San Francisco.

The Transportation Authority's dual responsibilities — administering the local half-cent transportation sales tax and prioritizing and programming of State and Federal funds through the CMP and SFTP process — are an opportunity to coordinate San Francisco's transportation planning decisions and optimize the City's investments in transportation infrastructure and services. The SFTP links transportation objectives and policies to a specific list of transportation investments, prioritized across a long-range planning horizon. The CMP's 7-year CIP and the Transportation Authority's Prop L Five-Year Prioritization Programs serve as the main implementation tools for the San Francisco Transportation Plan.

As the CMA, the Transportation Authority serves as the lead coordinator for San Francisco involvement in the regional process to develop a Sustainable Communities Strategy (SCS) and update the Regional Transportation Plan (RTP). Plan Bay Area 2050, which integrates the SCS and RTP into a single regional plan, was recently updated and adopted by MTC and ABAG in October 2021 and amended in November 2024. As required by SB 375 (Steinberg), passed in 2008, Plan Bay Area integrates long-range land use, housing, and transportation planning in the region to reduce greenhouse gas emissions from motor vehicles. An update to the plan, Plan Bay Area 2050+, is expected to be considered for adoption in 2026.

In 2011, the Transportation Authority deepened our role in congestion management on Treasure Island by being designated as the Treasure Island Mobility Management Agency (TIMMA). Subsequent resolutions tasked the Transportation Authority with advancing agency formation documents, planning, and tolling.

In addition, acting as the CMA, the Transportation Authority plays a key role in reviewing and supporting transportation analyses for major local transportation projects and land use policies that may affect the performance of the transportation system.

2.1.3 Relationship to City Agencies

State law mandates that the Transportation Authority, acting as CMA, biennially determines if the City is in conformance with the adopted Congestion Management Program. A finding of non-conformance has potentially significant consequences for transportation funding in the City. Also, according to state law, it is the City's responsibility to ensure that transportation projects, programs, and services are put in place, through its implementing departments, to maintain conformance with the CMP.

In fulfilling its CMA mandate, the Transportation Authority must assess City departments' transportation-related actions at least biennially relative to their congestion management impacts. In doing this, maximizing coordination with the City departments responsible for planning and implementation of transportation actions, so that such actions may be evaluated for congestion management impacts before they are put in place.

2.1.4 Relationship to Regional Planning/Programming Agencies

As the Congestion Management Agency for San Francisco, the Transportation Authority plays a key sub-regional planning and funding role with the Metropolitan Transportation Commission (MTC), the Bay Area's regional transportation planning agency, and with the Bay Area Air Quality Management District (BAAQMD), the agency responsible for implementation and monitoring of the region's Clean Air Plan. The Transportation Authority coordinates local input into MTC's Regional Transportation Plan (RTP) through the development of the San Francisco Transportation Plan, which establishes the overall vision and priorities for long-range transportation development and funding for San Francisco, and through San Francisco's portion of the Regional Transportation Improvement Program (RTIP). In these ways, San Francisco influences the vision and goals for transportation and land use planning in the Bay Area.

Chapter 3

CMP-Designated Roadway Network

KEY TOPICS

- Legislative Requirements
- San Francisco CMP Roadways

3.1 Legislative Requirements

California Government Code Section 65089(b)(1)(A) requires that performance standards be established for a system of highways and roadways designated by the agency, and that this designated Congestion Management Network include at least all state highways and principal arterials. No highway or roadway designated as part of the system may be removed from the system. The statutes do not define 'principal arterial.'

The statutes also refer to regional transportation systems as part of the required land use impacts analysis program, California Government Code Section 65089(b)(4). In 1991, the Bay Area's Congestion Management Agencies (CMAs) developed Congestion Management Program (CMP) networks in coordination with MTC's Metropolitan Transportation System (MTS). The MTS network, which includes both highways and transit services, was subsequently designated as the Congestion Management System, as required by the federal Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991. The MTC contracted with the congestion management agencies in the Bay Area to help develop the MTS and to use the CMPs to link land use decisions to the MTS.

3.2 San Francisco CMP Roadways

CMP legislation requires that all state highways (including freeways) and principal arterials are included in the CMP network. The network must be useful to track the transportation impacts of land development decisions, as well as to assess the congestion management implications of proposed transportation projects. San Francisco's network therefore includes numerous local thoroughfares since most urban traffic occurs on city arterials (rather than on the freeways). The next sections document the network selection criteria and process used in the initial San Francisco CMP in 1991 and describe the current network.

3.2.1 Selection Criteria

Consistent with State requirements, the San Francisco CMP roadway network includes all freeways and state highways, as well as principal arterials. San Francisco has defined principal arterials as the Major Arterials designated in the Transportation Element of the City's General Plan, defined as follows:

"cross-town thoroughfares whose primary function is to link districts within the city and to distribute traffic from and to the freeways; these are routes generally of citywide significance; of varying capacity depending on the travel demand for the specific direction and adjacent land uses."

Several additional arterials — Market Street, Mission Street, Sutter Street, and West Portal — are also included in the CMP roadway network. These streets experience significant conflicts between auto traffic and transit service.

3.2.2 Segmentation Method

The 1993 CMP documented the criteria used in 1991 to segment the CMP roadway network in San Francisco, including freeway facilities (see Appendix 1). The following five criteria determined segment limits for the city arterials in the CMP: predominant development patterns (e.g., number of driveways, institutional uses); changes in speed limits; major cross streets; significant changes in traffic volumes; and freeway ramps. These criteria are generally recognized as significant in explaining the operating profile of a roadway.

For freeway facilities the segmentation criteria are simpler. They include major interchange on and off ramps, and points where two freeway facilities merge or bifurcate.

3.2.3 Current Network

The complete CMP roadway network for San Francisco consists of 233 directional miles on both arterials and freeways.

Table 3-1. 2025 Monitored Segment Miles

ROADWAY TYPE TOTAL DIRECTIONAL MILES

Arterial 198.4

Freeway 34.9

Total 233.3

Performance monitoring was conducted in the current CMP cycle for the entire CMP network.

A complete list and description of all arterial and freeway segments in the CMP network can be found in Appendix 1.

3.2.4 Network Changes

State law prohibits the removal of roadway facilities from the initially designated CMP network (unless facilities are physically removed from the transportation system, such as the Embarcadero Freeway). New facilities may be added to the CMP network without restrictions, subject to the established criteria for inclusion. No network segmentation changes were made in the current CMP cycle. Appendix 1 lists all CMP arterials where segmentation changes have been made since 1991, including a technical justification.

From time to time the Transportation Authority may also monitor additional segments that are not part of the official CMP network. These do not constitute official changes to the CMP network but may be included to support current planning and system management efforts.

The Transportation Authority has not monitored any additional segments in the current CMP cycle.

Figure 3-1. CMP Roadway Network

Chapter 4

Multimodal Performance

KEY TOPICS

- Legislative Requirements
- Legislative Intent and Application to San Francisco
- Applications of Multimodal Performance Measures
- Legislatively Required Performance Measures (Auto LOS and Transit)
- Local Performance Measures (Transit, Bicycle, and Pedestrians)
- Work Program Items

This chapter presents the Congestion Management Program (CMP) multimodal performance results, including analyses of traffic congestion, transit, and non-motorized performance measures. It combines the traffic Level of Service (LOS) and multimodal performance elements required under state CMP legislation, reflecting the legislation's requirement that LOS be included as one of several multimodal performance measures. This approach is also consistent with San Francisco's urban, multimodal environment. Vehicular traffic congestion remains an important metric of transportation performance in San Francisco, but the City and County's Transit First policy and emphasis on accessibility place higher priority on the performance of alternative modes including transit, bicycles, and pedestrians than on private vehicle speeds.

4.1 Legislative Requirements

4.1.1 LOS Monitoring

The California Government Code requires that San Francisco use automobile LOS standards to measure the performance of the CMP roadway network, but permits Congestion Management Agencies (CMAs) a choice among the following methodologies for measuring LOS:

- Transportation Research Board Circular 212 (TRC 212);
- Transportation Research Board's Special Report 209: Highway Capacity Manual (HCM); or
- A uniform methodology adopted by the CMA that is consistent with the Highway Capacity Manual

The CMA is required to biennially determine the City's conformance with the CMP, including attainment of LOS standards.

In accordance with Congestion Management legislation, county and city governments are required to show that CMP route segments within their jurisdiction are operating at or above the CMP traffic LOS standard for all segments outside of any designated Infill Opportunity Zone (IOZ). CMP route segments located within an IOZ are exempt from the minimum LOS standards and deficiency plan requirements mandated elsewhere by the

CMP legislation. (California Government Code, Section 65089(b)(1)(B)) See Chapter 6 for a more detailed description and a map of San Francisco's IOZ.

4.1.2 Multimodal Performance Monitoring

The CMP legislation also requires a multimodal performance element. AB 1963 in 1994 requires that the CMP shall include "[a] performance element that includes performance measures to evaluate current and future multimodal system performance for the movement of people and goods," and identifies performance measure requirements.

4.2 Legislative Intent and Application to San Francisco

The original CMP legislation defined performance narrowly as roadway LOS. The amendments to the CMP legislation acknowledged the need for diversified solutions to complex transportation problems in urban areas, and the inadvisability of tackling them with just one mode. Current performance element requirements recognize that the transportation system performance monitoring should be multimodal: automobile, transit, bicycling, walking, and emerging modes such as micromobility, or rideshare.

According to the CMP legislation, deficiencies are identified only on the roadway system. The LOS scale focuses only on automobile travel. It does not take into account the person throughput capacity of a roadway, nor does it account for other vital performance measures of roadways such as safety. A city arterial may carry the maximum number of automobiles at an acceptable speed, but if each vehicle carries only the driver, then the throughput of the facility is suboptimal. San Francisco therefore includes performance standards and measurements that evaluate more aspects of the City's multimodal transportation network. San Francisco's high transit, pedestrian, and bicycle mode shares and extensive non-auto mode networks mean that the city benefits from a multimodal approach to system performance monitoring.

Consistent with State law, this report distinguishes between two categories of performance measures. Legislatively required measures include roadway LOS plus three transit service performance measures: routing, frequency, and inter-operator service coordination. These are the elements of congestion and multimodal performance measurement that are explicitly required by State congestion management statutes. San Francisco's CMP includes one additional roadway performance measure called the Buffer Time Index (BTI), which indicates roadway speed reliability. Section 4.4 provides details on all these metrics.

Local performance measures include multimodal metrics that are not used for determination of CMP conformance under State legislation but reflect performance goals for non-automobile modes in San Francisco. The local measures are used for planning purposes and to track trends over time. Transit measures included in this CMP include transit speeds, transit-to-auto speed ratios, transit speed reliability (variability), and transit accessibility, which tracks the proportion of population and jobs that are within a 5-minute walk to a given frequency of transit service. Non-motorized metrics include multi-modal volumes, bicycle network completeness, and injury or fatal collisions involving pedestrians or bicyclists. These measures are discussed in further detail in Section 4.5.

4.3 Applications of Multimodal Performance Measures

State law requires that link (roadway) LOS be used for determining CMP conformance and conducting deficiency planning, except within a designated Infill Opportunity Zone. Multimodal performance measures will be used for the following purposes:

- CMP conformance determinations
- CIP amendments
- Deficiency plans
- Land use impacts analysis

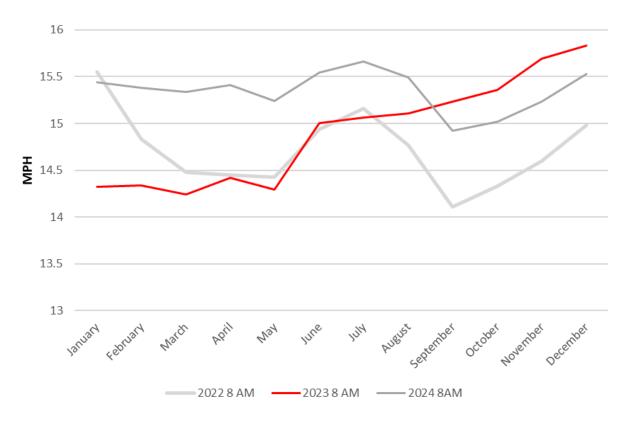
4.4 Legislatively Required Performance Measures

4.4.1 Roadway Speeds Monitoring

The CMP legislation defines roadway performance primarily by using the LOS traffic engineering concept to evaluate operating conditions on a roadway. LOS describes operating conditions on a scale of A to F, with "A" describing free flow, and "F" describing bumper-to-bumper conditions. The CMP-mandated traffic LOS standard for San Francisco was established at E in the initial (1991) CMP network. Facilities that were already operating at LOS F at the time of baseline monitoring, conducted to develop the first CMP in 1991, are legislatively exempt from the LOS standard. In addition, because much of San Francisco is in an Infill Opportunity Zone, most CMP segments in San Francisco are exempt from minimum LOS standards. However, continued monitoring of automobile LOS is useful for a variety of reasons. As the most extensive historical dataset available, LOS allows for the monitoring of traffic conditions over a long period of time. In addition to LOS, travel time reliability is an important measure of roadway congestion. With travelers experiencing a broad range of conditions from day to day, it is not sufficient to understand congestion just in terms of "average" or "typical" conditions (as measured by LOS). The Buffer Time Index (BTI), calculated as the percent of average additional travel time that the travelers need to budget so that they have a 95% chance of arriving on time, was introduced in the CMP 2021 to measure roadway reliability. In other words, it is the extra time needed if one does not want to be late more than once a month.

Congestion is also an important factor affecting the performance of surface-running transit service, especially for transit operating in mixed traffic. Finally, ongoing monitoring of both automobile and transit speeds within the same corridor facilitates the assessment of relative modal performance.

Monitoring Approach


The Transportation Authority uses commercial data from INRIX, which combines several real-time GPS monitoring sources with data from highway performance monitoring systems, as the primary source for speed and LOS calculations. INRIX data is supplemented with floating car data where INRIX data is not available. The INRIX and floating car data were collected in April and May 2025, which is the typical CMP monitoring period for San Francisco. The Buffer Time Index (BTI) for travel time reliability was calculated for CMP segments for which INRIX data were available (244 out of 245 segments). This is because

BTI calculation involves deriving the distribution of speeds and travel times during the monitoring period and determining the 95th percentile values. This distribution cannot be calculated for the limited subset of segments for which only floating car run data were available. The methodology and results of the LOS Monitoring effort are detailed in Appendix 3.

Fall 2023 Data Anomaly and Change to Methodology

Traffic speeds vary seasonally, with lower speeds in the spring and fall, and higher speeds in the summer and winter during holidays and school closures. The CMP accounts for this seasonality by monitoring speeds in the same months, April and May, of each year. Speeds during 2020 and 2021 followed unique patterns due to the Covid 19 pandemic, but typical seasonality was evident again in 2022. From 2022 to 2025 so far, each year has exhibited normal seasonal trends. However, in August and September of 2023, when speeds typically decline from summer highs, INRIX data showed speeds continuing to increase. Staff could not identify any events that would explain a significant 2-month long deviation in typical seasonal speed trends and believe there is an error in the underlying data or change in data processing methods, although INRIX has not confirmed this. After this unexplained increase in speeds data resumed typical seasonal patterns, although at elevated speeds. This resulted in higher peak period traffic speeds in 2025 than in 2023, which is an unintuitive trend that is not supported by contemporaneous arterial traffic counts in 2023 and 2025. As a result, the following analysis compares 2025 data to 2024 rather than data from the previous 2023 cycle, as would be typical.

Fig 4-X. INRIX Arterial Speeds by Month, 8AM

Summary of 2025 Roadway Monitoring Results

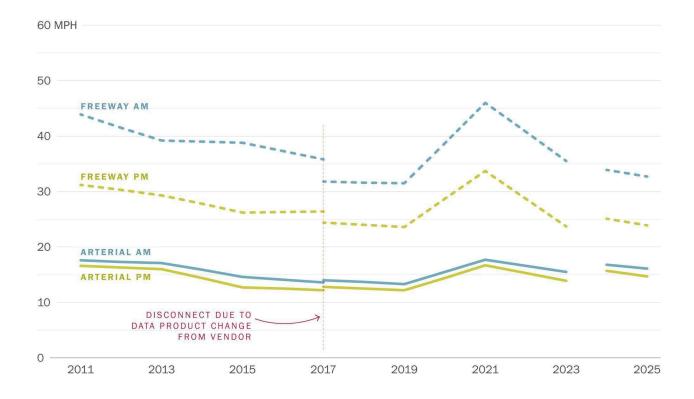
Table 4-1 and Table 4-2 presents the change in CMP network average 7 travel speeds (calculated as time-mean speed) and travel time reliability, between 2024 and 2025 for the AM (7:00 - 9:00 a.m.) and PM (4:30 - 6:30 p.m.) peak periods.

Table 4-1. CMP Network Average Travel Speed Change

		Time-Mean Travel Speed (MPH)					
Category	Peak Period	2024	2025	% Change			
Arterial	AM	16.8	16.1	-4%			
	PM	15.7	14.7	-6%			
Freeway	AM	33.9	32.7	-4%			
	PM	25.1	23.9	-4%			

Table 4-2. CMP Network Average Travel Time Reliability Change

		BUFFER TIME INDEX				
CATEGORY	Peak Period	2024	2025	Difference		
Arterial	AM	22%	22%	-0%		
	PM	21%	20%	-1%		
Freeway	AM	44%	57%	12%		
	PM	37%	61%	24%		


Roadway Speeds

In general, roadway speeds are lower during the PM peak than in the AM peak, conforming to long-time historical trends. Average speeds on the CMP network arterials have decreased since 2024 for both the AM (-4%) and PM (-6%) peaks. Average speeds on CMP network freeways also decreased in both the AM and PM peak (-4%).

Overall roadway speeds had been decreasing since 2011 until the COVID pandemic. Roadway speeds increased in 2021 during the COVID pandemic, then decreased between 2021 and 2023 as people began to return to pre-COVID pandemic activity levels. Speeds in both peak period on freeways and arterials declined from 2024 to 2025. (Figure 4-1).

A significant portion of San Francisco's arterial CMP network overlaps with its Vision Zero High Injury Network (visionzerosf.org/maps-data). In 2025, the Board of Supervisors adopted the San Francisco Street Safety Act, directing a multi-agency coordinated approach to ending severe and fatal traffic crashes. The act directs agencies to pursue strategies to identify and implement infrastructure improvements, improve traffic enforcement, pursue electronic enforcement technologies like red light and speed cameras, establish procedures to implement solutions more efficiently, and prioritize solutions where they are needed most. San Francisco has also introduced lower speed limits on a number of streets that are designated as "safety corridors" (sfmta.com/getting-around/walk/speed-management), many of which overlap with the CMP network. These changes work to improve the safety for all road users of San Francisco's transportation system, and may be reflected in a drop in travel speeds on the CMP network.

Figure 4-1. CMP Network Average Travel Speed

Note: data collected April – May each year

Download chart data (CSV)

Arterial roadway speeds in the downtown core are historically lower than citywide average arterial speeds. In 2025, arterial speeds in the downtown core declined by -6% in the AM peak and -7% in the PM peak, a faster rate of decline than citywide arterial speeds (Figure 4.X), indicating relatively greater increases in congestion downtown as can be expected with economic activities returning after limited growth post-pandemic.

Figure 4.X CMP Arterial Speeds in the Downtown Core and Citywide

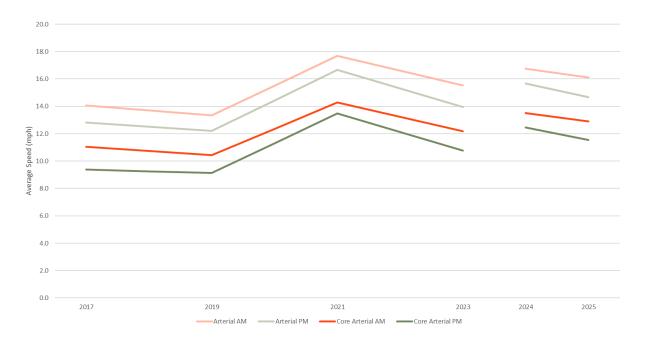


Figure 4-2 presents the change in CMP average speeds for each road segment between 2024 and 2025. The diagonal line from the lower left to the upper right means no change in speed has been observed, with points above (to the upper-left) / below (to the bottom-right) of the diagonal indicating speed increases/decreases respectively. Points clustered below and to the right of the diagonal line indicate that speeds have generally decreased from 2024 to 2025.

70 peak period AM PM60 class arterial 50 freeway average speed (2025) 30 20 10 0 10 30 40 60 0 20 50 70 average speed (2024)

Figure 4-2. Comparison of 2024 and 2025 CMP Segment Speeds

Download chart data (CSV)

Table 4-3 and Table 4-4 identify the segments that experienced the largest percentage decrease in speed since the previous CMP cycle.

Table 4-3. CMP Segments with Highest Percentage Decrease in Auto Speeds, AM Peak Period (7 a.m. – 9 a.m.)

CMP Segment	From	То	Dir.	2024 Auto Speed (mph)	2025 Auto Speed (mph)	Change (mph)	Change (%)
Junipero Serra	County Line	Brotherhood	N	25.7	17.4	-8.3	-32%

CMP Segment	From	То	Dir.	2024 Auto Speed (mph)	2025 Auto Speed (mph)	Change (mph)	Change (%)
Junipero Serra	19th	Sloat	N	24.6	17.2	-7.4	-30%
Junipero Serra	Sloat	19th	S	25.9	19.2	-6.6	-26%
Octavia	Fell	Market	S	11.5	8.8	-2.7	-23%
US-101	I-80 to Cortland	Cortland	S	36.8	29.1	-7.7	-21%

Table 4-4. CMP Segments with Highest Percentage Decrease in Auto Speeds, PM Peak Period (4:30 p.m. – 6:30 p.m.)

CMP Segment	From	То	Dir.	2024 Auto Speed (mph)	2025 Auto Speed (mph)	Change (mph)	Change (%)
US-101	County Line	Cortland	N	50.44	32.09	-18.35	-36%
Junipero Serra	19th	Sloat	N	24.18	16.05	-8.13	-34%
Octavia	Fell	Market	S	13.27	8.97	-4.30	-32%
Alemany	Junipero Serra	Lyell	Е	21.51	15.10	-6.41	-30%
Junipero Serra	19th	Brotherhood	S	38.38	29.45	-8.93	-23%

Roadway Travel Time Reliability

In addition to speed and LOS, the Buffer Time Index (BTI) travel time reliability metric was derived for all CMP segments for which INRIX data were available, where a lower value of

BTI indicates higher reliability. Between 2024 and 2025 reliability remained flat on arterials, with the BTI remaining at 22% in the AM peak and decreasing from 21% to 20% in the PM peak (a slight improvement in reliability). In contrast, freeway travel time reliability worsened significantly over the same period from 44% to 57% in the AM peak and from 37% to 61% in the PM peak (Table 4-2 and Figure 4-4), indicating a rising need to manage freeway demand (see San Francisco Freeway Management Study, underway).

Figure 4-4. CMP Network Average Travel Time Reliability, as Shown by Buffer Time Index (BTI)

Note: data collected April – May each year

Download chart data (CSV)

Roadway Segments Level of Service (LOS) and Buffer Time Index (BTI)

Figure 4-5 and Figure 4-6 show the LOS by roadway segment for the AM peak and PM peak, respectively. Full LOS monitoring results can be found in Appendix 3. Figure 4-7 and Figure 4-8 show the BTI by segment for AM and PM peak periods respectively. Interactive versions of these maps can be found on the SFCTA's website at cmp.sfcta.org.

Figure 4-5. 2025 Roadway LOS on CMP Network Segments, Weekday AM Peak

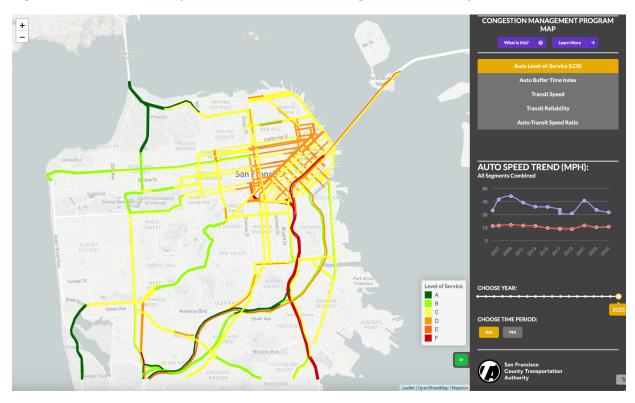


Figure 4-6. 2025 Roadway LOS on CMP Network Segments, Weekday PM Peak

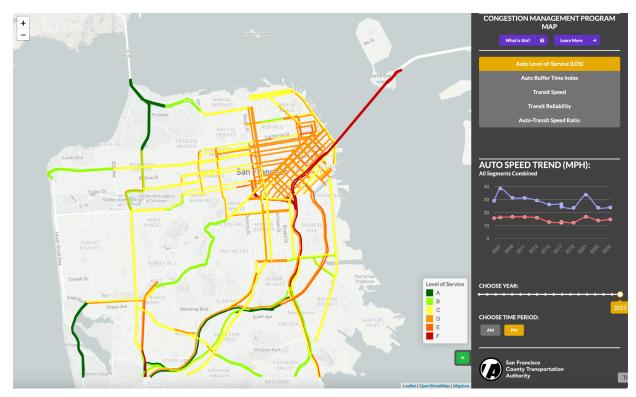


Figure 4-7. 2025 Roadway Buffer Time Index on CMP Network Segments, Weekday AM Peak

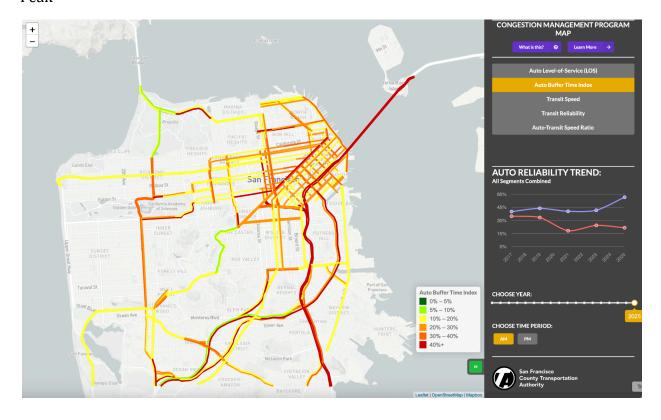



Figure 4-8. 2025 Roadway Buffer Time Index on CMP Network Segments, Weekday PM Peak

San Francisco Congestion Dashboard

The Transportation Authority maintains the San Francisco Congestion Dashboard (congestion.sfcta.org), shown in Figure 4-9. This tool reports many of the same roadway performance metrics as reported in the CMP congestion visualization, but with a much greater frequency (monthly instead of biennially) for a larger set of roadway segments, and at an hourly level as well as for the AM and PM peak periods starting in January 2020.

SAN FRANCISCO CONCESTION
DASHBOARD

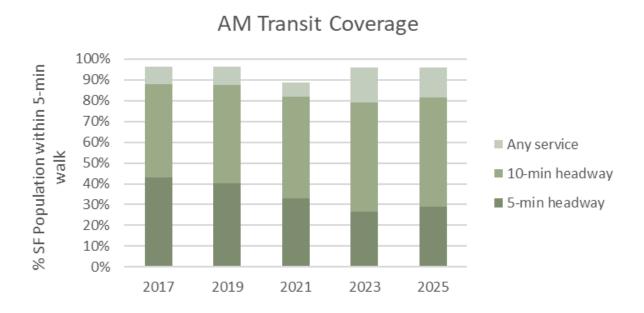
Wat a label of Service (LOR)
Speed Change Relative to Pre-COVID
Vehicle Mites Traveled (MIT)
Veh

Figure 4-9. San Francisco Congestion Dashboard

Deficiency Planning

There are no non-exempt LOS F CMP segments in this cycle for the AM or PM peaks. A section describing the exempt statuses of segments measured at LOS F in the current CMP cycle can be found in Appendix 3. For a detailed discussion regarding the CMP deficiency planning process, see Appendix 4.

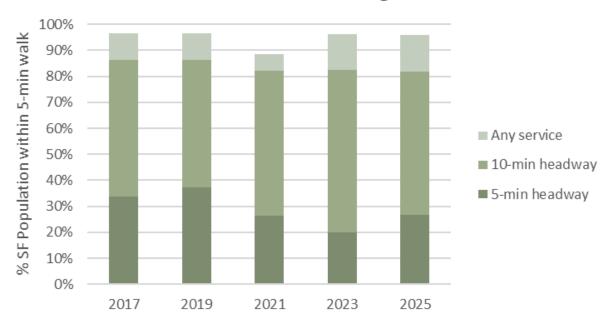
4.4.2 Transit Coverage and Frequency


San Francisco has the most extensive transit coverage in the Bay Area. Refer to the websites of transit operators serving San Francisco8 for information on their service frequency and routing, which are still undergoing changes in the current post-COVID pandemic context.

Transit frequency refers to the number of transit vehicles (buses, trains, or ferries) per unit of time (e.g., 4 buses per hour). The inverse of the frequency is called "headway," which is the time between transit vehicles (e.g., 15 minutes between buses).

Muni transit coverage by walk access at different levels of headways has been reported since the 2021 CMP cycle (and calculated for the April – May monitoring period biennially starting from 2017). This transit coverage metric reports the percent of San Francisco's total population and total jobs that are within a 5-minute walk of Muni transit service, using Muni's General Transit Feed Specification (GTFS), and population and employment data derived from the US Census' American Community Survey and San Francisco Planning Department.

Since 2023, more than 95% of San Francisco residents live within a 5-minute walk of Muni service. Moreover, the share of the population within a 5-min walk of a Muni route with a 5-min headway increased from 27% in 2023 to 29% in 2025 for the AM peak and from 20% in 2023 to 27% in 2025 for the PM peak, though this is still lower than the pre-COVID population share within a 5-min walk of a Muni route with a 5-min headway (Figure 4-11 and Figure 4-12).


Figure 4-11. Percentage of SF Population Within a 5-min Walk of Muni Service by Service Frequency, Weekday AM Peak

Download chart data (CSV)

Figure 4-12. Percentage of SF Population Within a 5-min Walk of Muni Service by Service Frequency, Weekday PM Peak

PM Transit Coverage

Download chart data (CSV)

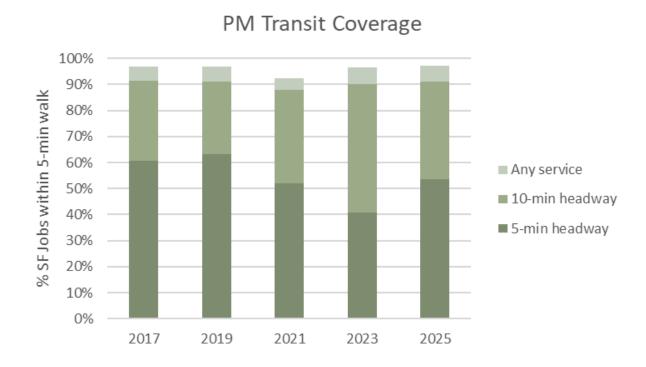
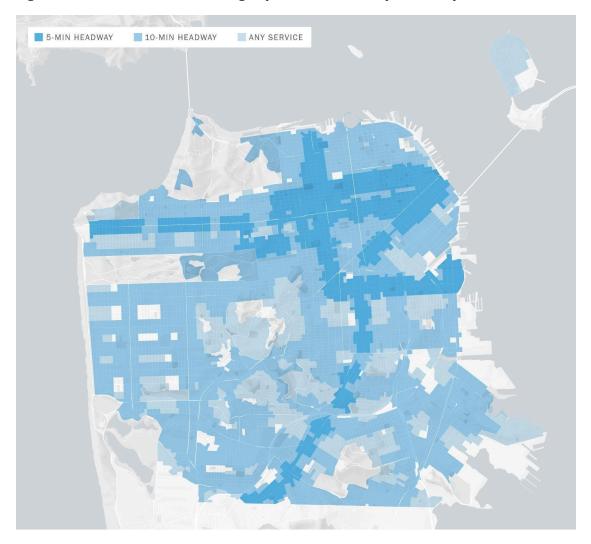

Muni transit coverage in terms of jobs for both the AM and PM peak periods show trends similar to those observed in population Muni transit coverage, with a larger increase between 2023 and 2025 in the share of jobs within a 5-min walk of a Muni route with a 5-min headway, from 50% to 56% (AM peak) and from 41% to 56% (PM peak) (Figure 4-13 and Figure 4-14).

Figure 4-13. Percentage of SF Jobs Within a 5-min Walk of Muni Service by Service Frequency, Weekday AM Peak

Download chart data (CSV)


Figure 4-14. Percentage of SF Jobs Within a 5-min Walk of Muni Service by Service Frequency, Weekday PM Peak

Download chart data (CSV)

Figure 4-15 and Figure 4-16 show maps of Muni transit coverage in Spring 2025 by service frequency for the AM and PM peak periods respectively.

Figure 4-15. Muni Transit Coverage by Service Headway, Weekday AM Peak

Note: data are from April – May of the monitoring year

5-MIN HEADWAY 10-MIN HEADWAY ANY SERVICE

Figure 4-16. Muni Transit Coverage by Service Headway, Weekday PM Peak

Note: data are from April – May of the monitoring year

4.4.3 Interoperator Coordination

Linkages between transit services are provided by different operators (e.g., timed transfers at transit centers, joint fare cards, etc.) to facilitate the use of transit. Senate Bill 602 required that MTC, in coordination with the Bay Area's Regional Transit Coordinating Committee (RTCC), develop rules and regulations for fare and schedule coordination in MTC's nine-county Bay region. To that end, MTC has set up the Fare Integration Task Force in 2020 to further fare coordination and integration in the region. SB 1474, passed in 1996, set coordination objectives for the region's transit services, and MTC has adopted Resolution 3055, Transit Coordination Implementation Plan, to comply with SB 1474. This MTC-led process is considered sufficient to meet the intent of CMP law regarding transit service coordination in the region. Compliance with MTC's process by Muni and all other operators serving San Francisco will therefore constitute sufficient grounds for a finding of conformance with CMP transit coordination requirements.

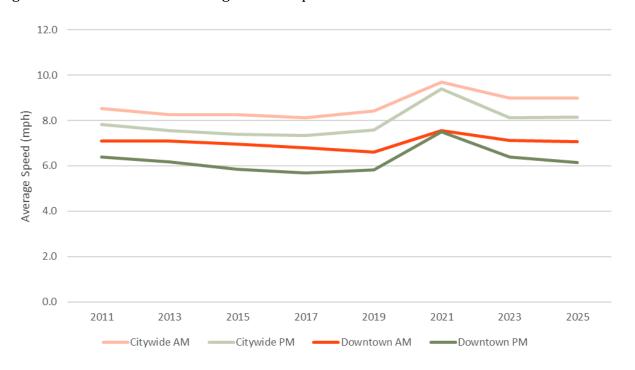
4.5 Local Performance Measures

In measuring performance, we are measuring the ability of the system to satisfy the transportation needs of all San Franciscans, and we must therefore measure performance with reference to all types of transportation system users, including transit users, bicyclists and pedestrians. Other than the outdated LOS standard as a performance measure for autos, there are few established standards for measuring system performance for transit riders, bicyclists, and pedestrians. Multimodal performance data is increasingly needed for system performance measurement pursuant to updates of the San Francisco Transportation Plan and congestion management planning as well as for project planning, transportation impact analysis, and project prioritization. It is necessary to provide better information to the traveling public, as well as to inform policy decisions about funding of transportation projects and services.

The CMP includes nine types of local multi-modal performance measures:

- Average Transit Speeds
- Transit Speed Reliability
- Auto/Transit Speed Ratio
- Multimodal Counts
- Screenline Volumes
- Bicycle Network Connectivity
- Street Safety
- Other Indicators

4.5.1 Average Transit Speeds (Muni bus)


Transit speeds are based on the San Francisco Municipal Transportation Agency's (SFMTA) automatic passenger counter (APC) systems, which collect robust, real-time data on transit vehicle performance and ridership. For the current CMP cycle, APC data collected on Muni's bus (diesel and trolley coach) fleet in the entire months of April and May 2025 were analyzed. The raw APC transit data utilized corresponded to the same AM (7 – 9 a.m.) and PM (4:30 – 6:30 p.m.) peak periods as the automobile LOS monitoring. A detailed description of the APC data collection and analysis methodology can be found in Appendix 6.

Between 2023 and 2025, average transit travel speeds on the CMP network for both the AM and PM peaks stayed constant at 9.0 mph and 8.1 mph, respectively. This is a positive outcome, given the rise in vehicle traffic and multi-modal activity over this period. Transit speeds in 2025 are still higher than that during pre-COVID. Table 4-5 shows the change in average transit speeds. Figure 4-17 illustrates average bus speeds on CMP segments in the AM and PM peak periods since 2011. Appendix 6 contains the full results from all transit segments.

Table 4-5. CMP Network Average Transit Speed Change

	Peak	TIME-MEAN TRAVEL SPEED				
CATEGORY	PERIOD	2023	2025	% CHANGE		
Arterial	AM	9.0	9.0	-0%		
	PM	8.1	8.1	+0%		

Figure 4-17. CMP Network Average Transit Speeds⁵

Download chart data (CSV)

Table 4-6 and Table 4-7 shows CMP segments with the slowest transit speeds in the current CMP cycle. The slowest transit speed during the AM peak period was 4.4 mph on Turk from Market to Hyde. During the PM period, the slowest transit speed was 3.7 mph, also on Turk from Market to Hyde. 3% of the monitored CMP segments have a speed under 5 mph in the AM peak period, whereas 8% of the monitored CMP segments have a speed under 5 mph in the PM peak period.

⁵ Downtown in this figure is defined to include streets east of Franklin/Gough Streets, and north of the Central Freeway and Mission Creek. It also includes the streets immediately surrounding the Octavia Boulevard entrance/exit of the Central Freeway

Table 4-6. Slowest Bus Speed CMP Segment, AM Peak Period

CMP Segment	From	То	Dir.	Speed (MPH)
Turk	Market	Hyde	W	4.4
Columbus	North Point	Greenwich	S	4.5
Harrison	8th	Division	W	4.6
Kearny	Market	Columbus	N	5.0
Castro/Divisadero	Geary	Pine	N	5.2

Table 4-7. Slowest Bus Speed CMP Segment, PM Peak Period

CMP Segment	From	То	Dir.	Speed (MPH)
Turk	Market	Hyde	W	3.7
5th St	Market	Brannan	S	4.1
Mission/Otis	3rd	Embarcadero	N	4.1
Geneva	Cayuga	Paris	Е	4.1
Folsom	4th	1st	Е	4.2

Table 4-8 and Table 4-9 shows the CMP segments with the greatest relative changes in average bus speeds since the last CMP cycle. Between 2023 and 2025, the largest percentage decrease in transit speeds was -43% for the AM peak, whereas for the PM peak it was -28%. Figure 4-18 and Figure 4-19 show maps of monitored transit speeds by segment for the AM and PM peaks.

Table 4-8. CMP Segments with Highest Percent Decreases in Bus Speed: AM Peak Period

CMP Segment	From	То	Dir.	2023 Bus Speed (MPH)	2025 Bus Speed (mph)	Change (mph)	Change (%)
19th Ave/Park Presidio	Lake	Lincoln	S	13.1	7.5	-5.6	-43%
Folsom	13th	8th	Е	8.9	5.2	-3.8	-42%
19th Ave/Park Presidio	Sloat	Juniper o Serra	S	14.9	8.8	-6.1	-41%
Geneva	Cayuga	Paris	Е	6.6	4.1	-2.5	-37%
Mission/Otis	3rd	Embarc adero	N	6.4	4.1	-2.3	-36%

Table 4-9. CMP Segments with Highest Percent Decreases in Bus Speed: PM Peak Period

CMP Segment	From	То	Dir.	2023 Bus Speed (MPH)	2025 Bus Speed (mph)	Change (mph)	Change (%)
Folsom	13th	8th	Е	7.2	5.2	-2.0	-28%
Fulton	Park Presidio	10th Ave	Е	12	8.7	-3.3	-28%
Mission/Otis	3rd	Embarca dero	N	5.2	4.1	-1.2	-23%
Fulton	Park Presidio	10th Ave	Е	12	9.5	-2.5	-21%
Geneva	Cayuga	Paris	Е	5.1	4.1	-0.9	-18%

Figure 4-18. 2025 Average Muni Bus Speeds on CMP Network Segments, Weekday AM Peak

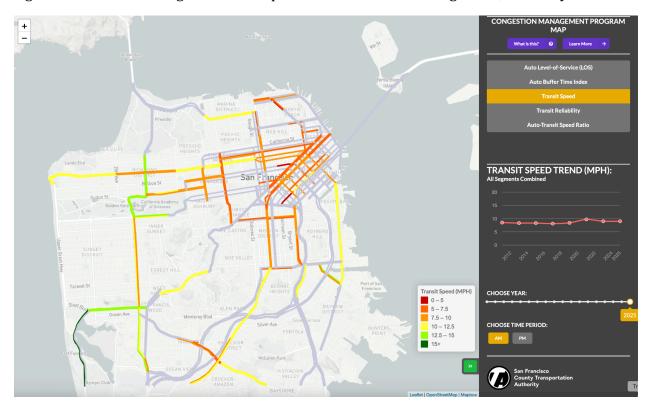
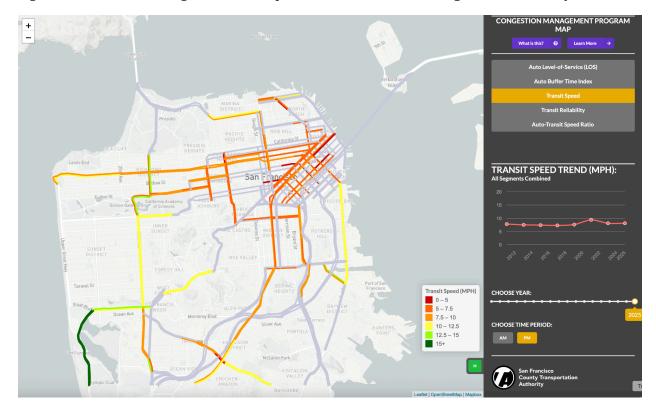



Figure 4-19. 2025 Average Muni Bus Speeds on CMP Network Segments, Weekday PM Peak

4.5.2 Transit Speed Reliability (Muni bus)

Beyond the average transit speed, San Francisco Municipal Transportation Agency's (SFMTA) automatic passenger counter (APC) data were also used to calculate transit speed reliability (variability). A detailed description of the APC data collection and analysis methodology can be found in Appendix 6. The standard deviation and coefficient of variation of travel time provide indicators of how reliable transit vehicle travel times are for a given segment. The standard deviation provides an absolute measure of variability, and indicates in minutes how far from the mean speeds typically range. The coefficient of variation (CV) is calculated by dividing the standard deviation by the average speed, thereby normalizing the results to compare relative variability between faster and slower segments. The CV is expressed as a percentage of the mean speed. A lower percentage indicates more reliable transit speeds. As with transit travel times, this is a positive trend and may reflect benefits from a variety of transit priority investments and traffic management strategies that were implemented during this time.

Transit reliability has stabilized (i.e. variability stayed the same) since 2023, staying at the same levels (21%) observed in 2019 and 2023 for both the AM and PM peak (Table 4-10 and Figure 4-20). With the average transit speeds in 2025 at 9.0 mph (AM peak) and 8.1 mph (PM peak), a CV of 21% means that approximately 70% of the time, a 3 mile transit trip would take between 15.8 and 24.2 minutes for the AM peak, and between 17.6 and 26.9 minutes for the PM peak.

Segments with less reliable transit speeds (CV > 30%) are shown in Table 4-11 and Table 4-12. Figure 4-21 and Figure 4-22 show maps of transit reliability by segment for the AM and PM peaks. Appendix 6 contains the full results from all transit segments.

Table 4-10. CMP Network Average Transit Speed Variability (Coefficient of Variation)

	2013	2015	2017	2019	2021	2023	2025
A M	16%	16%	16%	21%	23%	21%	21%
PM	16%	18%	18%	21%	25%	21%	21%

Figure 4-20. CMP Network Transit Speed Variability

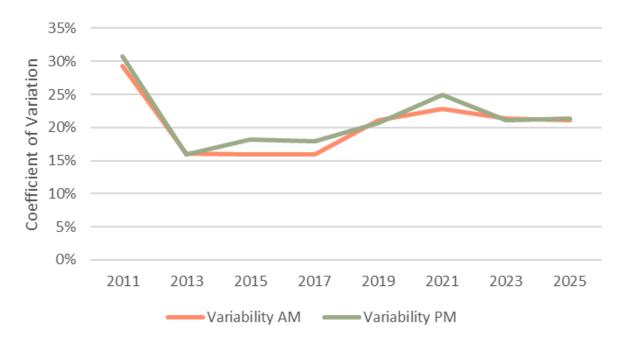


Table 4-11. Least Reliable Transit Segments in 2025 (CV>30%), AM Peak

Name	From	То	Dir	Avg. Transit Speed (mph)	S.D Transit Speed (mph)	CV
Fulton	10th Ave	Park Presidio	W	7.7	3.5	45%
Junipero Serra	Brother hood	19th	N	7.5	3.1	41%
North Point	Van Ness	Columbus	Е	8.5	3.4	40%
North Point	Columb us	Embarcader o	Е	9.0	3.1	34%

Name	From	То	Dir	Avg. Transit Speed (mph)	S.D Transit Speed (mph)	CV
3rd St	Terry Francoi s	Market	N	8.4	2.7	33%
Fulton	Arguell o	10th Ave	W	10.6	3.3	31%

Table 4-12. Least Reliable Transit Segments in 2025 (CV>30%), PM Peak

Name	From	То	Dir	Avg. Transit Speed (mph)	S.D Transit Speed (mph)	CV
Fulton	10th Ave	Park Presidio	W	6.9	2.8	40%
Geneva	Cayuga	Paris	Е	4.1	1.6	38%
Mission/Otis	3rd	Embarcadero	N	4.1	1.5	36%
North Point	Columbus	Van Ness	W	5.9	2.0	35%
Bayshore	Jerrold	Industrial	S	8.9	3.0	34%
Harrison	1st	4th	W	6.8	2.2	33%
3rd St	Terry Francois	Market	N	7.4	2.4	32%
O'Farrell	Mason	Market	Е	5.9	1.9	32%
Potrero	21st	Division	N	7.9	2.5	32%
Clay	Kearny	Davis	Е	6.3	1.9	30%

Figure 4-21. 2023 Average Muni Bus Speed Reliability on CMP Network Segments, Weekday AM Peak

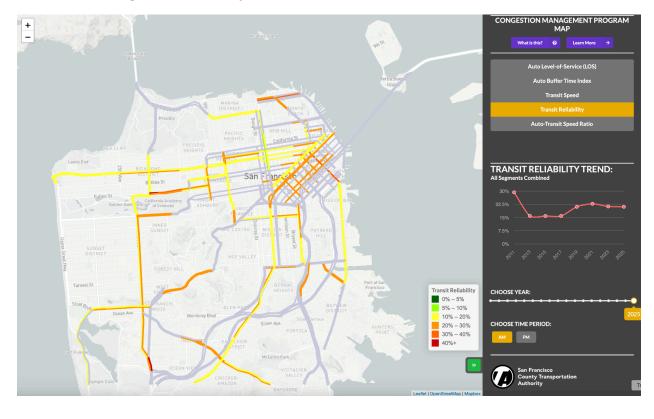
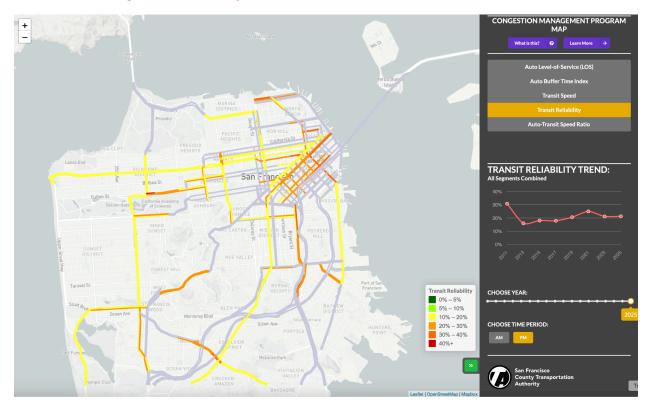



Figure 4-22. 2023 Average Muni Bus Speed Reliability on CMP Network Segments, Weekday PM Peak

4.5.3 Auto/Transit Speed Ratio

In order to assess the competitiveness of transit with driving, the ratio of auto to transit speeds is calculated by comparing auto to transit speeds on the portions of the CMP network for which Muni data was available. Roadway speeds are derived from the INRIX data used for LOS monitoring and transit speeds are derived from APC data. The APC dataset is from April and May of 2025, the same period as the roadway LOS monitoring effort. For each segment, the ratio of auto-to-transit speed was calculated. A ratio of 2 would indicate that, for a particular segment, auto speeds are twice as fast as transit speeds. The ratio had been improving between 2013 and 2019. However, the ratio worsened since the start of the COVID pandemic and has been hovering around 1.7-1.8 since 2021 (Table 4-13 and Figure 4-23). Due to the Fall 2023 data anomaly described in section 4.4.1, the auto-to-transit speed ratio for 2025 cannot be directly compared to 2023

CMP Segments with auto to transit speed ratios above 2.4 are shown in Table 4-14 and Table 4-15. No monitored segment in the current cycle has an auto to transit speed ratio under or equal to 1 (which would mean that transit is at least as fast as autos).

Appendix 6 contains the full auto-to-transit speed results from all transit segments. Figure 4-24 and Figure 4-25 show maps of auto-to-transit ratios by segment for the AM peak and PM peak, respectively.

Table 4-13. CMP Network Auto/Transit Speed Ratio Change

Time Period	2013	2015	2017	2019	2021	2023	2025
AM	2.07	1.77	1.67	1.59	1.82	1.73	1.79
PM	2.12	1.72	1.66	1.61	1.77	1.72	1.80

Figure 4-23. CMP Network Auto-Transit Speed Ratio

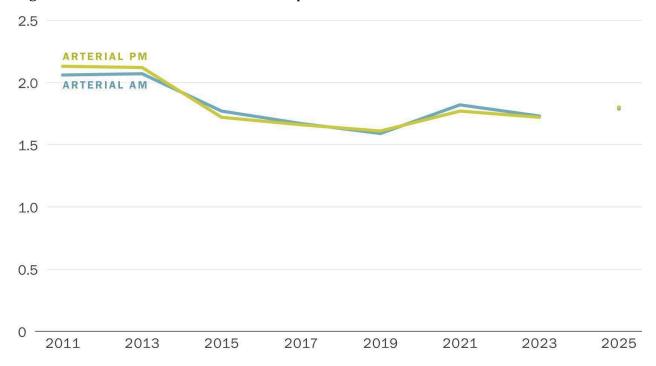
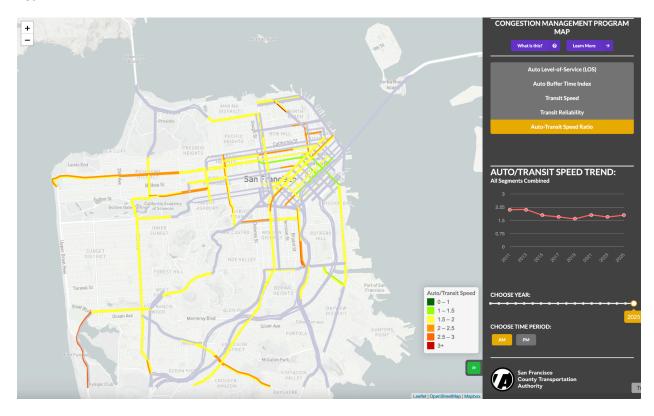


Table 4-14. Segments with Auto to Transit Speed Ratio of 2.0 or higher, AM Peak


Name	From	То	Dir	AVG. TRANSIT SPEED (MPH)	AVG. AUTO SPEED (MPH)	AUTO:TRANSIT SPEED RATIO
Columbus	North Point	Greenwich	S	4.5	14.4	3.2
Skyline	Sloat	County Line	S	15.3	41.3	2.7

Name	From	То	Dir	AVG. TRANSIT SPEED (MPH)	AVG. AUTO SPEED (MPH)	AUTO:TRANSIT SPEED RATIO
Potrero	21st	Cesar Chavez	S	7.7	19.4	2.5
Geneva	Cayuga	Paris	Е	6.6	16.0	2.4

Table 4-15. Segments with Auto to Transit Speed Ratio of 2.0 or higher, PM Peak

Name	From	То	Dir	AVG. TRANSIT SPEED (MPH)	AVG. AUTO SPEED (MPH)	AUTO:TRANSIT SPEED RATIO
Columbus	North Point	Greenwich	S	4.4	13.2	3.0
Geneva	Cayuga	Paris	Е	4.1	12.2	3.0
Turk	Market	Hyde	W	3.7	10.1	2.7
Columbus	Greenwich	North Point	N	5.8	15.4	2.7
Sutter	Mason	Gough	W	5.1	12.8	2.5
5th St	Market	Brannan	S	4.1	10.2	2.5
Fulton	Masonic	Arguello	W	7.3	17.8	2.4

Figure 4-24. 2025 Auto-to-Transit Speed Ratios on CMP Network Segments, Weekday AM Peak

CONGESTION MANAGEMENT PROGRAM
MAP

What is thin?

Auto Everle-of-Service (LOS)
Auto Buffer Time Index

Transit Speed

Transit Reliability

Precision

Auto-Transit Speed Transit Reliability

Auto-Transit Speed

Transit S

2 - 2.5 2.5 - 3 3+

Figure 4-25. 2025 Auto-to-Transit Speed Ratios on CMP Network Segments, Weekday PM Peak

4.5.4 Multimodal Counts

Congestion on city streets is the outcome of several factors including the number of cars driving; the roadway capacity available; construction, lane blockages, and other special events; allocation of signal green-time to various competing modes and movements. Similarly, crowding on transit is also a result of several factors including the number of riders; vehicle size, frequency of service, origin-destination demand patterns. These factors can be roughly classified into supply-side and demand-side. In order to understand demand-side factors affecting San Francisco's transportation system, and create a set of data that can be analyzed longitudinally by various modes, the Transportation Authority supported a multimodal volume monitoring program beginning with the 2015 CMP.

The City and County of San Francisco has placed a high priority on supporting walking and cycling/rolling modes (including bicycling, bikeshare and shuttles) to facilitate active and affordable means of travel. Unlike automobile and transit volumes, increasing volumes of pedestrian and bicycle traffic are a direct indicator of system performance because increased use of these modes alleviates, rather than causes, traffic congestion and transit crowding. Walking and bicycling are space-efficient, healthy, and environmentally beneficial ways to travel, and have minimal negative impact on surrounding communities. Little data has historically been available to measure the numbers of trips made by walking and bicycling, but City and County agencies are now working together to collect volume data for both modes on a more regular basis. Bicycle and pedestrian volumes are reasonable proxies

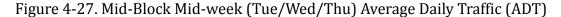
for the "performance" of these non-motorized modes of travel. Auto volumes are also collected for relative comparison and to indicate trends.

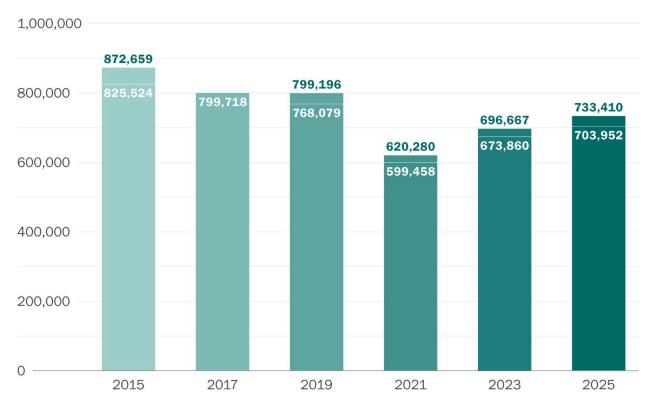
Counts are collected at 29 mid-block locations (vehicle only)9 and 14 intersections (vehicle, bicycle, and pedestrian) throughout the city (Figure 4-26). Vehicle-only mid-block mainline counts were collected over 3 continuous mid-week days (Tuesday to Thursday). The Transportation Authority collected weekend counts too (i.e. data collection from Tuesday to Sunday) at three of these mid-block locations during the CMP monitoring period. Intersection counts were conducted on a single day during the AM (7:00 a.m. – 9:00 a.m.) and PM (4:30 p.m. – 6:30 p.m.) peak periods for vehicles, bicycles, and pedestrians. The biennial collection of multimodal counts at a fixed set of locations is expected to provide information about long term performance trends just like LOS monitoring.

The following three sections detail the results of the multimodal volume monitoring by mode (vehicle, bicycle, and pedestrian).10 Refer to Appendix 7 for further details.

⁶ To be consistent through all CMP cycles when multimodal counts have been collected (i.e. 2015-2025), we are re-reporting all collected data only for mid-week days (Tuesday to Thursday), so some numbers will be slightly different from what was reported in previous CMP cycles.

MID-BLOCK COUNTS TURNING MOVEMENT COUNTS — CMP NETWORK


Figure 4-26. Locations of Turning Movement and Mid-Block Counts


Vehicle Counts

Vehicle counts are collected at both intersections and mid-block locations. The mid-block counts were processed to obtain the typical weekday average peak traffic and average daily traffic (ADT) for each location and direction. These are then summed up for each CMP year (Figure 4-27 and Figure 4-28). Total vehicle counts traversing through all intersection count locations during the AM and PM peak on the day of collection are shown in Figure 4-29.

Mid-block mid-week average daily traffic continued to increase between 2023 and 2025 (+5%), reaching 92% of pre-COVID pandemic (2019) levels. Mid-block mid-week traffic increases display similar patterns for the AM and PM peaks. For the AM peak, traffic volumes increased by 12% between 2021 and 2023, and by another +5% between 2023 and 2025, reaching 88% of pre-COVID pandemic (2019) levels. For the PM peak, traffic volumes increased by +9% between 2021 and 2023; the increase slowed to +3% between 2023 and 2025, reaching 92% of pre-COVID pandemic (2019) levels. At intersections, AM

peak vehicle counts continue to increase (+6%) between 2023 and 2025, whereas PM peak vehicle counts actually show a decrease (-3%). For both sets of vehicle counts, the gap between AM and PM peak counts is narrowing. The trendlines may also suggest that the ongoing vehicular traffic decrease observed from 2015 to 2019 is continuing past the COVID pandemic.⁷

^{*} Data collected April – May biennially at the same locations, counts shown for the bars are summed over all 29 locations and directions, whereas the white line within each bar only shows counts summed over 28 locations and directions (excluding counts from Van Ness between California and Pine, where no data were collected in 2017).

 $^{^{7}}$ A data error in 2023 midblock traffic counts was discovered that resulted in lower AM peak period counts. This error is corrected in the 2025 CMP.

Figure 4-28. Mid-Block Mid-week (Tue/Wed/Thu) Average AM/PM Peak Traffic Counts

* Data collected April – May biennially at the same locations, counts shown for the columns are summed over all 29 locations and directions, whereas the line within each column only shows counts summed over 28 locations and directions (excluding counts from Van Ness between California and Pine, where no data were collected in 2017).

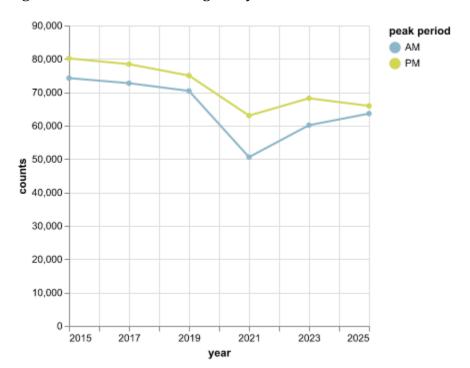


Figure 4-29. Intersection Single-Day Vehicle Counts

* Data collected April – May biennially at the same locations, counts shown are summed over all locations.

Vehicle

Download chart data (CSV)

Bicycle Counts

SFMTA has conducted citywide bicycle counts at key intersections and corridors since 2006, and the SFMTA reports can be found at sfmta.com/bicycle-ridership-data. In addition to SFMTA, SFCTA has continued to collect manual bike counts as part of its multimodal counts effort at intersection locations since 2015 (Figure 4-30). Bicycle counts were recorded for 2 hours each in the AM (7:00 a.m. – 9:00 a.m.) and PM (4:30 p.m. – 6:30 p.m.) peak periods at 14 intersections around the city in April – May 2023.

In contrast to vehicle counts, bicycle intersection counts show a stronger recovery in the PM peak than the AM peak. Bicycle counts showed a particularly strong increase between 2023 and 2025 of +42% for the AM peak and +36% for the PM peak.

1,600 peak period AM 1,400 PM 1,200 1,000 counts 800 600 400 200 0 2015 2021 2025

Figure 4-30. Intersection Single-Day Bicycle Counts

* Data collected April – May biennially at the same locations, counts shown are summed over all locations.

Download chart data (CSV)

Pedestrian Counts

In addition to vehicle and bicycle counts, pedestrian counts have also been collected longitudinally since 2015 at the same intersections for the AM and PM peaks (Figure 4-31). Intersection pedestrian counts stayed constant (+0%) between 2023 and 2025 for the AM peak, standing at 63% of pre-COVID pandemic (2019) levels. The counts in the PM peak showed a modest increase (+8%), though still remaining at only 73% of pre-COVID pandemic (2019) levels.

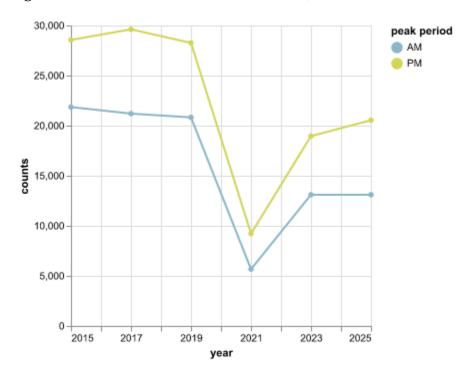


Figure 4-31. Intersection Pedestrian Counts, 2015 – 2023

* Data collected April – May biennially at the same locations, counts shown are summed over all locations.

Download chart data (CSV)

4.5.5 Screenline Volumes

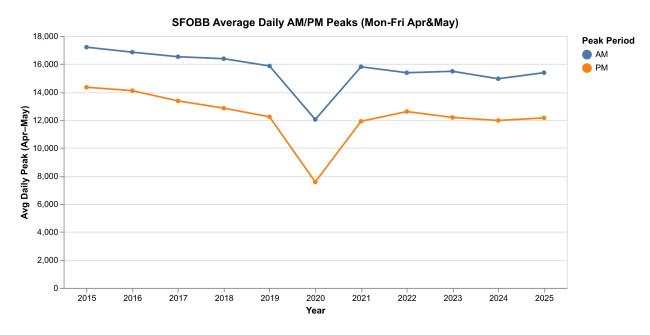

A screenline is an imaginary line that divides an area into two sections. It is usually defined in such a way that a given roadway crosses it only once. Counts are conducted on roadways at the screenline to understand traffic flow patterns between the two sections. Vehicle volumes at two screenlines are reported during the AM (7:00 to 9:00 a.m.) and PM (4:30 to 6:30 p.m.) peak periods by processing data from Caltrans Performance Measurement System (PeMS) and Bay Area Toll Authority (BATA). One screenline is across the Bay Bridge and the other is at the San Mateo county line on the US-101 and I-280 freeways. BATA only provides Westbound counts on the Bay Bridge, whereas PeMS provides counts in both directions at the San Mateo county line.

Figure 4-32 shows westbound Bay Bridge vehicle volumes collected by the Bay Bridge Toll Authority (BATA). Before the COVID pandemic, peak period westbound Bay Bridge volumes have been slowly decreasing from 2015 to 2019. These volumes dropped in 2020 due to the pandemic. In 2021, westbound Bay Bridge volumes nearly returned to 2019 levels for both the AM and PM peaks. Since 2021, westbound Bay Bridge volumes have declined from 2021 volumes in the AM and held steady in the PM (at around 12,000 crossings) peaks.⁸

⁸ The numbers may differ slightly from what was reported in the CMP 2023 report because BATA provided revised Bay Bridge crossing volumes, and the numbers reported in the CMP 2023 report were actually averages over the full week (including weekends).

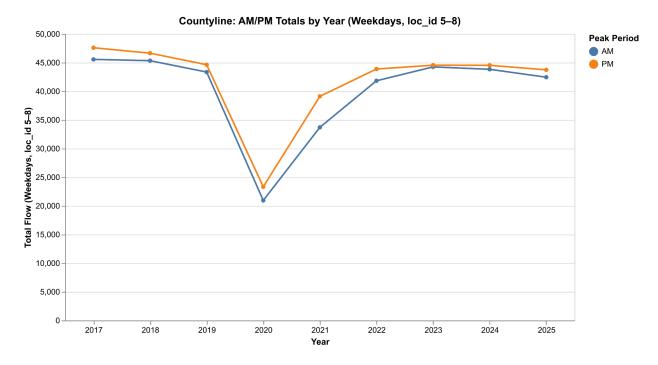

Figure 4-34 shows the total average peak period volumes on US-101 and I-280 freeways at the San Mateo county line. The volumes at this screenline peaked in 2023 and declined slightly between 2023 and 2025.

Figure 4-32. Average Bay Bridge Westbound Screenline Volumes, Weekday Peak Period (BATA) (Apr – May of each year)

Source: BATA

Figure 4-34. Weekday Peak Period Average US-101 and I-280 volumes at San Mateo Countyline (sum of Northbound and Southbound) (Apr – May of each year)

Source: Caltrans PeMS

Note: Sensor data which are not directly observed (i.e. imputed volumes) are excluded

Download chart data (CSV)

4.5.6 Bicycle Network Connectivity

The extent and connectivity of the pedestrian and bicycle networks are important metrics of non-motorized transportation performance. Comprehensive networks that allow pedestrians and bicyclists to travel easily and safely between destinations are essential to encourage non-motorized travel as an alternative to driving and contributing to traffic congestion.

Table 4-16 summarizes the length of bicycle facilities by class. As of June 2025, the completed network included 467 miles of bike routes, of which 18% were Class I paths and 29% were Class II designated bicycle lanes. About 43% of bikeways are Class III signed routes in shared lanes, many of which have wide shoulders or are marked with sharrows. Recently, SFMTA has been prioritizing the conversion of the existing network to higher-quality facilities rather than expanding the network itself. This mileage is not fully inclusive of Slow Streets (28 miles as of 2025), which overlaps partially with the bike network presented in Table 4-16.

Table 4-16. Miles of San Francisco Bicycle Facilities by Class, 2015 to 2025

	2015	2017	2019	2021	2023	2025	% of total bike network miles (2025)
Class I Bike Path	60	62	78	78	86	87	18%
Class II Bike Lane*	133	137	136	139	133	131	28%
Class III Bike Route (Sharrows)	214	214	210	204	203	202	43%
Class IV Separated Bikeways**	16	16	28	42	45	52	11%
Total	422	429	452	464	467	472	

^{*} includes bike lanes and buffered bike lanes (paint only).

Source: SFMTA

Note: Percentages may not sum to 100% due to rounding

^{**} includes bike lanes with a vertical barrier.

Figure 4-35. San Francisco Bicycle Network

4.5.7 Street Safety

Safety for road users, particularly pedestrians and cyclists, are key measures of transportation performance, and a critical policy priority for the city of San Francisco. The City and County of San Francisco adopted Vision Zero as a policy in 2014, committing to build better and safer streets, educate the public on traffic safety, enforce traffic laws, and adopt policy changes that save lives. The San Francisco Street Safety Act (July 2025) re-affirmed San Francisco's commitment to traffic safety and identified specific activities across city agencies to advance the city's goals.

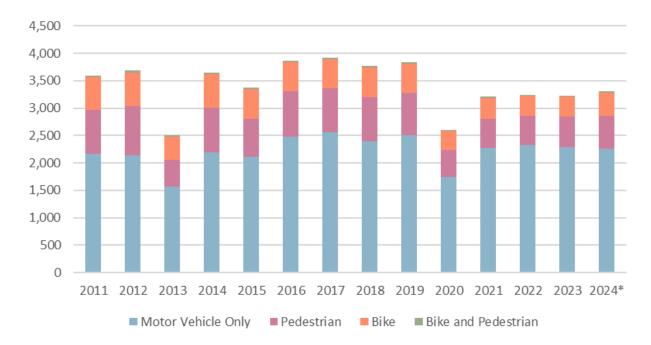
The California Statewide Integrated Traffic Records System (SWITRS) maintained by the California Highway Patrol compiles all local collision reports into a unified database. Fatalities from traffic collisions are tracked, and collisions resulting in injury are classified by severity of injury. SafeTREC at UC Berkeley has developed the Transportation Injury Mapping System (TIMS) to provide easy access to SWITRS data. Table 4-17, Figure 4-36,

and Figure 4-37 display traffic collision injury and fatality statistics by involved party for recent years, and includes provisional data for 2024.11

The total number of collisions, and collisions by severity level (property damage only (PDO), non-severe injury, severe injury) dropped in 2020, probably due to the substantial reduction in vehicle and non-motorized volumes in 2020 due to the COVID pandemic. Fatal collisions also dropped in 2020 relative to 2019, but were within the overall range of fatal collisions since 2011. Since 2020, the total number of collisions has increased, but remains below 2019 levels. The number of PDO collisions has steadily increased since 2020, but remains below 2019 levels. Injury collisions increased from 2020 but remain below 2019 levels. (Figure 4-36). The total number of fatal collisions in 2024 at 42 (of which 23 and 3 involved pedestrians and bikes, respectively), however, is the highest observed since 2011 (other than 2022 which has the same number of fatal collisions) (Figure 4-37). Total fatalities also increased to their highest level observed since 2011, reaching 48 (Figure 4-3X). These totals are higher than those reported through San Francisco's Vision Zero program, which exclude fatalities that occur on freeways.

Table 4-17. Traffic Collisions by Severity and Involved Party

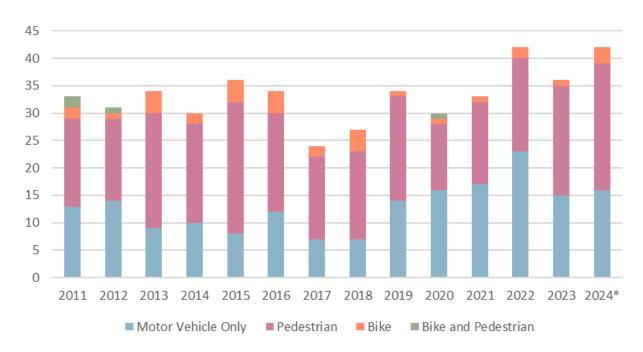
Severity	Involved Party Type	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Property Damage Only	Motor Vehicle Only	1,575	1,587	1,180	1,649	1,554	1,815	1,859	1,756	1,789	1,196	1,528	1,562	1,591	1,600
	Pedestrian	480	525	282	493	394	466	457	471	430	254	262	257	284	289
	Bike	285	288	198	304	261	249	245	262	243	161	164	145	173	198
	Bike and Pedestrian	12	10	10	9	10	12	10	10	13	7	6	2	3	8
	Total	2,352	2,410	1,670	2,455	2,219	2,542	2,571	2,499	2,475	1,618	1,960	1,966	2,051	2,095
Non-Sever e Injury	Motor Vehicle Only	508	463	338	459	454	548	576	518	576	454	604	618	583	523
	Pedestrian	239	292	166	232	229	249	252	228	238	155	174	198	199	213
	Bike	277	291	181	264	238	245	237	233	229	160	176	173	154	178


ı															
	Bike and Pedestrian	13	25	14	13	10	9	17	15	12	9	10	11	8	12
	Total	1,037	1,071	699	968	931	1,051	1,082	994	1,055	778	964	1,000	944	926
Severe Injury	Motor Vehicle Only	88	92	54	87	96	120	123	127	140	98	147	141	114	143
	Pedestrian	73	81	38	84	79	109	98	93	111	76	87	83	71	92
	Bike	38	32	42	53	45	39	43	53	50	30	45	45	39	46
	Bike and Pedestrian	1	1	3	4	3	1	4	3	3	4	3	6	4	5
	Total	200	206	137	228	223	269	268	276	304	208	282	275	228	286
Fatal	Motor Vehicle Only	13	14	9	10	8	12	7	7	14	16	17	23	15	16
	Pedestrian	16	15	21	18	24	18	15	16	19	12	15	17	20	23
	Bike	2	1	4	2	4	4	2	4	1	1	1	2	1	3
	Bike and Pedestrian	2	1								1				
	Total	33	31	34	30	36	34	24	27	34	30	33	42	36	42
Total	Motor Vehicle Only	2,184	2,156	1,581	2,205	2,112	2,495	2,565	2,408	2,519	1,764	2,296	2,344	2,303	2,282
	Pedestrian	808	913	507	827	726	842	822	808	798	497	538	555	574	617
	Bike	602	612	425	623	548	537	527	552	523	352	386	365	367	425

Bike and Pedestrian	28	37	27	26	23	22	31	28	28	21	19	19	15	25
Total	3,622	3,718	2,540	3,681	3,409	3,896	3,945	3,796	3,868	2,634	3,239	3,283	3,259	3,349

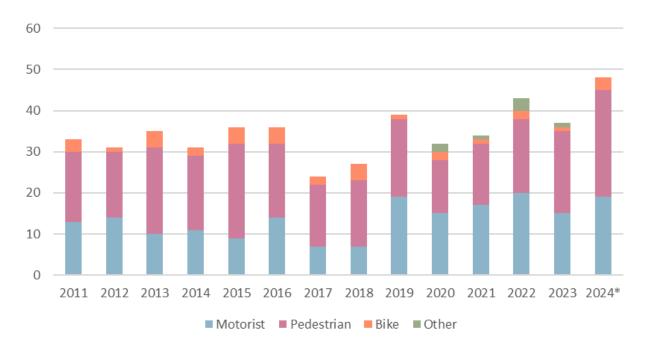
^{*} provisional data

Source: California Highway Patrol SWITRS / UC Berkeley SafeTREC TIMS


Figure 4-36. Injury Collisions by Party Type Involved in San Francisco

^{*} provisional data.

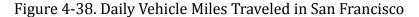
Source: California Highway Patrol SWITRS / UC Berkeley SafeTREC TIMS

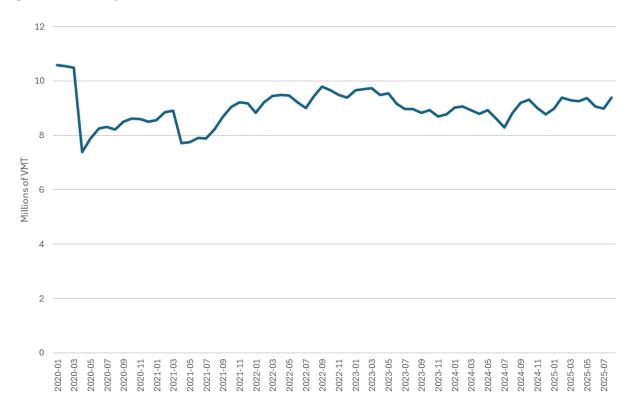

Figure 4-37. Fatal Collisions by Vulnerable Road User Involvement in San Francisco

^{*} provisional data.

Source: California Highway Patrol SWITRS / UC Berkeley SafeTREC TIMS

Figure 4-3X. Fatalities by Type in San Francisco




4.5.8 Other Indicators

In addition to the legislatively required performance measures and the local performance measures, several other metrics provide background and context for the transportation system's performance.

Vehicle miles traveled

In 2016, the San Francisco Planning Commission adopted new guidelines for evaluating the transportation impacts of new projects to implement California Senate Bill 743 (Steinberg 2013). Critically, environmental impact determinations locally and statewide are now based on vehicle miles traveled (VMT) rather than additional automobile delay as measured by level-of-service (LOS). VMT decreased by 20-30% in the first 1.5 years of the COVID pandemic. As of 2025, VMT is hovering at around 10% below pre-COVID levels (Figure 4-36).

Source: Transportation Authority Congestion Dashboard

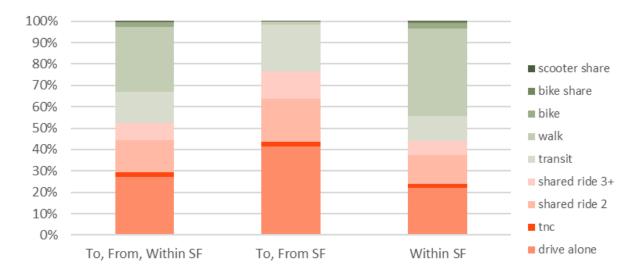
Download chart data (CSV)

Transit Ridership

Transit Ridership refers to the total boardings on transit services. Figure 4-37 shows recent ridership trends for the three largest transit systems serving San Francisco. Muni carries the greatest number of trips in San Francisco, with over 500,000 trips on a typical

April-May weekday in 2025. Ridership on all three operators declined significantly with the spread of COVID in 2020. Since then, ridership has been gradually increasing every year, but in 2025 ridership is still lower than pre-COVID pandemic levels, with Muni, BART, and Caltrain at 72%, 44%, and 54% of 2019 (pre-COVID pandemic) ridership respectively.

Figure 4-39. Average Weekday Daily Transit Boardings by Operator (April-May of each year)


Source: SFMTA/BART/Caltrain Note: data collected April – May each year except for Caltrain it is February

Download chart data (CSV)

Mode Share

Mode share describes the mix of modes, such as transit, biking, walking, and driving used to travel to, from and within San Francisco. Figure 4-40 summarizes the share of trips by mode for in San Francisco for three different travel markets: all trips to/from/within San Francisco, regional trips to/from San Francisco (trips where one of the trip ends is in San Francisco and the other is not), and trips within San Francisco (trips that both start and end in San Francisco). Driving (alone, sharing a ride, or using a TNC) is the most prevalent mode to both get around within San Francisco (43.9%) and to travel to/from San Francisco (76.3%). For travel within San Francisco, walking is the next most prevalent mode (41.0%). There is also a significant transit share for both travel markets (11.8% for trips within San Francisco, and 21.9% for trips to/from San Francisco).

Figure 4-40. Mode Split for Person-Trips in San Francisco

Download chart data (CSV)

Micromobility Trips

The SFMTA collects information on the usage of shared bikes and scooters ("micromobility"). Figure 4-41 shows trips increased from 2017 to 2019, peaking at 33,000 average monthly trips. Average monthly trips then declined to 25,000 in 2020, likely due to the COVID pandemic, but still remained higher than before 2019. From 2021 to 2024, micromobility trips fluctuated between 30,000 and 38,000, and then in 2025 (up to and including September 2025) increased to 66,000 average monthly trips.

.

⁹ https://www.sfmta.com/shared-mobility-dashboards

700000 600000 500000 400000 300000 200000 100000 2017 2020 2021 2022 2018 2019 2023 2024 2025*

Figure 4-41. Average Monthly Micromobility Trips

Source: https://www.sfmta.com/reports/shared-mobility-trips

4.5.9 Muni Performance Goals and Metrics

In November 1999, San Francisco voters passed Proposition E which, among other changes, amended the City Charter to require the creation of service standards and goals for Muni to attain. The SFMTA, through its strategic planning process, establishes its vision and values, and identifies the strategic goals and metrics in order to achieve this vision and uphold this set of values.12 Refer to the SFMTA Strategic Plan and Performance Metrics web page (sfmta.com/performance-metrics) for details on each goal and metric.

4.6 Work Program Items

Work program items consist of those intended to improve the City's performance monitoring as well as initiatives targeted at improving system performance. Transportation Authority work program elements intended to continue and enhance performance monitoring include:

- Monitor CMP network speeds and LOS in Spring 2027.
- Collect vehicle, transit, pedestrian, and bicycle count information to understand longitudinal trends in demand.
- Update the San Francisco Congestion Dashboard (<u>congestion.sfcta.org</u>) at regular intervals.
- Monitor transit travel times and reliability on the CMP network.
- Monitor transit coverage metric and develop an interactive visualization for it.

^{*} provisional data: 2025 data is only up to and including September 2025

- Coordinate with MTC to implement Continuous Travel Diary Survey Program that would provide sample data every other year.
- Develop a data strategy that includes enhanced performance monitoring

In addition, the Transportation Authority and City agencies will continue to engage in planning efforts and implement projects to improve the transportation system's performance. The San Francisco Transportation Plan (SFTP) 2050+, a minor update to SFTP 2050, will be published in Summer 2026. The plan will inform San Francisco's advocacy for discretionary (e.g. competitive) transportation funds, as well as for new transportation revenues. The purpose of SFTP+ is to incorporate post-pandemic travel patterns, lowered revenue projections, and revised land-use allocation, and to refine SFTP investment strategies and recommendations. This minor update will also update policy developments and report on implementation progress of SFTP 2050. The Transportation Authority will, as part of its efforts to achieve these outcomes:

- Coordinate with other City agencies pursuant to the <u>San Francisco Street Safety Act</u> to implement Vision Zero.
- Coordinate with SFMTA on development and implementation of the bicycle network (SFMTA Biking and Rolling Plan).
- Maintain and support the Safe Routes to School program.
- Keep the overall maintenance of city streets in good condition and prepare for risks of climate change.
- Work with SFMTA to expand transit priority through its Muni Forward program.
- Bring Caltrain and future High Speed Rail (The Portal) to the Salesforce Transit Center.
- Provide input to regulators and legislators on transportation technology sector
- Continuously improve the SF-CHAMP Model's capability to model all modes of transportation, including bicycle and pedestrian trips.

Select Planning Activities

- Complete the SFTP2050+, including the West Side Network Study, which will
 analyze the multimodal westside transportation network and propose mid-term
 solutions (within a ten to fifteen year implementation timeframe) which could
 improve the performance of the westside network and help achieve San Francisco's
 citywide transportation goals.
- Through a partnership with the region, counties, and Caltrans, identify and promote San Francisco's priorities for the regional freeway network. Set a vision for the management of the City's freeway management through the Freeway Network Management Study.
- Complete the TDM Market Analysis and TDM Strategic Plan updates, which will identify neighborhood-specific transportation demand management recommendations, including programs and policies that seek to reduce single-occupancy car trips by encouraging people to travel by transit, bicycling, walking, carpooling/vanpooling, or telecommuting.

- Complete the Brotherhood Way Safety and Circulation Plan
- Complete the Vision Zero Ramps Phase 3
- Advance the recommendations of the Eco-Friendly Goods Movement Working Group
- Advance the Bayview Truck Safety Study
- Advance the Treasure Island Mobility Management Program, including transit expansion, TDM efforts such as bikeshare, and toll and affordability program
- Complete the Geary/19th Avenue Subway and Regional Connections Study
- Complete the Geary/Fillmore Underpass Study

Chapter 5

Travel Demand Management Element

KEY TOPICS

- Legislative Requirements
- Legislative Intent and Application to San Francisco
- TDM Policy Framework
- TDM Strategy and Workplan
- TDM Policies, Requirements, and Programs
- TDM Studies and Plans
- Work Program

5.1 Legislative Requirements

The Congestion Management Program legislation requires that the CMP include a travel demand management (TDM) element. TDM is a systematic approach to shift how, when, and where people travel through programs and policies. TDM will maximize the infrastructure investment priorities defined in the San Francisco Transportation Plan 2050 (SFTP2050) and can reduce congestion by shifting more trips from driving alone to walking, bicycling/rolling, transit, or carpooling. TDM can include policies, low-cost capital improvements, requirements on new development, and information/outreach programs designed to facilitate the use of sustainable transportation options. This chapter describes San Francisco's TDM Policy Framework, Strategy, and TDM programs.

5.2 Legislative Intent and Application to San Francisco

The CMP legislation's requirement for a TDM element encourages local policy and programs to promote travel behavior changes to reduce congestion and associated impacts identified in the CMP.

5.3 TDM Policy Framework

San Francisco has several guiding policy documents that shape the development of TDM activities. These include:

Transit First Policy. In 1973, the City Planning Commission and the Board of Supervisors adopted the Transit First policy, giving priority to transit rather than accommodating the single occupant automobile. Transit First has evolved into a set of policies advocating travel demand management and prioritization of alternative modes. The City's Transit First Policy is documented in the City Charter, the Transportation Element of the City's General Plan, the Planning Code, and other City ordinances.

San Francisco General Plan. The San Francisco General Plan includes multiple objectives relevant to TDM (included in Appendix 8). Many of the city's recent area plans, including the Transbay Transit Center District Plan (2009), the Eastern Neighborhoods

Transportation Implementation Planning Study (2011), the Central SoMa plan, and others, also include TDM objectives.

San Francisco Transportation Plan (SFTP). Every four years, the Transportation Authority updates the city's long-range transportation plan. The Transportation Authority Board adopted the SFTP 2050 in December 2022. SFTP 2050 outlines how transportation funding in the city will be prioritized through 2050, with consideration for citywide goals as well as expected and potential revenues.

San Francisco Climate Action Plan (CAP). San Francisco's 2021 Climate Action Plan (CAP), a roadmap to achieving the city's goal of net-zero greenhouse gas emissions by 2040, outlines strategies to combat climate change within six sectors including transportation and land use. Strategies for reducing transportation emissions outlined in the plan include "creating a well-connected transportation network that shifts trips from automobiles to walking, biking, and other active transportation modes," with TDM recommendations for implementation. The CAP is undergoing an update with completion expected by the end of 2025.

Regional TDM Requirements — Transportation Control Measures. San Francisco is subject to regional air district requirements to implement TDM measures (also referred to as Transportation Control Measures) to address air quality issues. As required by the California Clean Air Act (CCAA), the Bay Area Air Quality Management District (BAAQMD) developed and adopted a revised Plan, the 2017 Bay Area Clean Air Plan, which provides updated guidance to San Francisco. Appendix 8 provides more details about regional TDM requirements and Appendix 9 lists the currently adopted regional TCMs, and discusses how San Francisco's congestion management strategies contribute to, or reinforce, these measures.

Treasure Island Transportation Implementation Plan (TITIP). The TITIP was an integral part of the development plan for Treasure Island and Yerba Buena Island approved by the Board of Supervisors in 2011. It provides a general, overarching TDM plan for the development of 8,000 housing homes - 27% of them affordable - housing more than 20,000 new residents, as well as extensive open space, hotels, restaurants, shops, and entertainment venues. The TITIP calls for expanded bus service, new ferry service to SF Ferry Building, a free on-island shuttle, a parking management plan, transit pass, and a congestion pricing program. The TITIP's twin goals are 50% of peak hour trips to be made by sustainable modes (transit, bike, walk, carpool) and financial self-sustainability of the program, with parking and toll revenue going to support the transit services.

5.4 TDM Strategy and Work Plan

San Francisco is an attractive place to live, work, and play because it offers so much to such a wide variety of people. As a vibrant, busy city, San Francisco faces challenges with how to accommodate expected growth within the constraints of a world-class location that has already developed most of its available land. As the city increases in density, transportation and land-use planners are working to make the city work better for the people who are already here as well as for those who will be here in the future. The city has limited street space and, due to the costs of building major infrastructure, San Francisco is striving to

make the most efficient use of this limited space by designating more space for transit, walking, and biking/rolling, which can move more people in less space.

In 2014, City agencies developed an Interagency Travel Demand Management Strategy outlining the city's approach to TDM, including activities related to (1) Implementing new TDM Policies, (2) Enforcement of existing policies, and (3) Developing supportive programs and services.

In 2017, City agencies developed a joint San Francisco TDM Plan: 2017 – 2020. This workplan, based on the 2014 strategy, identifies the policies, projects, and programs the city can implement to accomplish its TDM goals. The plan was collaboratively developed by the four major agencies that implement TDM in the city — the Transportation Authority, SFMTA, the San Francisco Planning Department, and the San Francisco Department of the Environment. The plan identifies which agencies have the lead and support roles for elements of the plan.

SFTP2050 included a policy initiative to plan for mode shift long-term. The TDM policy initiative includes a recommendation that San Francisco establish a vision and measurable goals for the future TDM strategy to guide development, implementation, and monitoring; identify priority geographic areas, trip types, travel markets, traveler types, and success metrics to guide program selection and implementation details; and provide guidance for how to incorporate ongoing evaluation to track impacts on modeshift and cost effectiveness and guide future TDM investments. The next steps to advance this policy initiative is to complete a TDM Market Analysis (led by SFCTA) and update the TDM Strategic Plan (a joint effort between SFCTA and SFMTA).

The TDM Market Analysis will use post-pandemic travel data to describe travel markets and match them with appropriate TDM strategies, identify areas where TDM investments will be most effective, establish VMT-reduction and mode-shift targets for TDM, and provide guidance for program implementation. This effort will inform the TDM Strategic Plan, which will define priority TDM actions to advance in the near-term. The recommendations of these two efforts will define funding priorities for the 5-year prioritization of Prop L funds.

The Transportation Authority, which was designated as the Treasure Island Mobility Management Agency (TIMMA) in 2014 to implement the TITIP, is developing a business plan with San Francisco Bay Ferry to begin permanent, zero-emission ferry service in 2027. TIMMA is also securing funding to launch bikeshare in 2026 and the on-island shuttle in 2027. TIMMA is working to gain adoption of the toll and affordability system programs.

5.5 TDM Policies, Requirements, and Programs

San Francisco has a range of TDM policies and requirements to promote sustainable modes of transportation. These efforts can be broadly grouped in the following categories:

Policy: TDM policies, including the Commuter Benefits Ordinance and the Commuter Shuttle Policy.

Programs for Existing Development: TDM programs including the on-street car sharing pilot program, bicycle sharing program, residential outreach program, parking management, and others. The strategies behind these programs are described in the San Francisco TDM Plan: 2017 – 2020 and will be updated in the forthcoming TDM Market Analysis and TDM Strategic Plan Update.

Policies, Requirements, and Programs for New Development: TDM requirements on new development, including planning code requirements, requirements in area plans and development agreements. The Transportation Sustainability Fee (TSF) places a fee on new development to fund transportation network improvements. Transportation Demand Management Ordinance requires new developments to provide on-site amenities that prioritize sustainable alternatives to driving.

Each of these categories of TDM requirements, policies, and programs are described in detail in Appendix 8.

5.6 TDM Studies and Plans

As outlined in the San Francisco TDM Plan: 2017 – 2020, several city agencies and departments are conducting numerous TDM activities, studies, and plans. This section identifies recently completed, TDM-related studies and planning efforts where the Transportation Authority played a significant role.

School Access Plan: In 2023, the Transportation Authority adopted the School Access Plan for San Francisco which recommends transportation solutions for K–5 students and their families. Solutions focus on children and caregivers who are burdened by medium- and long-distance trips to school and afterschool activities, and seek to close equity gaps and provide sustainable transportation options to help reduce vehicle travel. The plan builds on the Transportation Authority's 2016 Child Transportation Study, which found that most parents drive their children to school and afterschool activities and that most parents are interested in alternative transportation options.

SF Business Relocation TDM Project: Prior to the pandemic, SFMTA initiated an effort to develop and operate a program focused on addressing the transportation needs of employees at businesses that are opening in or relocating to new locations in San Francisco. The program was originally scoped to provide transportation planning services and materials to businesses to help their employees travel to work in their new location without driving alone, thus setting a more sustainable commute habit from the start, rather than trying to change habits after they have already been set. However, SFMTA amended the project scope to shift the target population from businesses as they relocate between offices, to all office-based businesses as an increasing number of employees return to office settings.

More detailed descriptions of these studies and plans can be found in Appendix 8.

5.7 Inter-Agency Work Program

The Transportation Authority will continue to work jointly with city partners to further transportation demand management policies, requirements, and programs, including

numerous efforts based on the Interagency Travel Demand Management Strategy, the 2017 San Francisco TDM Plan, and SFTP2050. Specifically, the Transportation Authority will:

- Support enforcement of TDM-related developer commitments and planning code requirements.
- Continue to pursue a comprehensive mobility management program on Treasure Island, including congestion pricing, parking management, an on-island shuttle, and transit affordability pass development.
- Pursue funding for and partner with SFUSD and DCYF to implement the recommendations of the School Access Plan to study strategies to manage medium to long-distance travel for students to school.
- Implement the TDM recommendations in the SFTP 2050: complete the TDM Market Analysis and TDM Strategic Plan Update to guide future Prop L investments with a goal of increasing the effectiveness of TDM programs and impact of transportation investments.
- Evaluate the effectiveness of individual TDM programs.
- Continue all other ongoing TDM programs and activities.
- Continue to work on regional TDM initiatives, coordinating with both regional entities (BAAQMD and MTC), and neighboring local agencies.

Chapter 6

Land Use Impacts Analysis Program

KEY TOPICS

- Legislative Requirements
- Legislative Intent and Application to San Francisco
- Institutional Framework for a CMP Land Use Analysis Program
- Neighborhood Transportation Planning
- Transportation Impact Analysis
- Work Program

6.1 Legislative Requirements

The California Government Code section 65089(b)(4) requires that Congestion Management Programs (CMPs) include a program to analyze the transportation system impacts of local land use decisions. These analyses must measure impacts using CMP performance measures and estimate the costs of mitigating the impacts.

The CMP legislation also requires the Transportation Authority, as the Congestion Management Agency, to "develop a uniform database on traffic impacts for use in a countywide transportation computer model..." that will be used "to determine the quantitative impacts of development on the circulation system..." (California Government Code section 65089(c)). The database must be consistent with the modeling methodology used by regional planning agencies, the Metropolitan Transportation Commission (MTC) and the Association of Bay Area Governments (ABAG). The Transportation Authority's GIS database, including ABAG Projections data, updated CMP networks, and numerous other data items (such as roadway level of service, transit ridership, travel behavior survey results, etc.) constitutes the uniform database for San Francisco. In addition, the Transportation Authority has an activity-based travel demand forecasting model used in combination with the uniform database. This is further detailed in Chapter 8 and Appendix 12.

In September of 2002 the legislature passed SB 1636, which is intended to "remove regulatory barriers around the development of infill housing, transit-oriented development, and mixed-use commercial development" (California Government Code 65088(g)) by enabling local jurisdictions to designate "infill opportunity zones." These zones (IOZs) are defined as areas with compact, transit-oriented housing and mixed use in close proximity to transit service. The CMP network segments within a designated IOZ are exempt from CMP traffic level of service (LOS) standards. SB 743 revised the definition and requirements related to IOZs (discussed further in Section 6.3.4).

On September 27, 2013, the governor signed into law SB 743, which revised the criteria for determining the significance of transportation impacts within transit priority areas. Transit priority areas are defined as areas within a half mile of a major transit stop, either existing, or planned, which in San Francisco comprises most of the city. The text of SB 743

specifically eliminates automobile delay as measured by level of service as a significant impact on the environment in transit priority areas. Parking impacts from infill development also shall not be considered significant impacts on the environment. The Governor's Office of Planning and Research identified vehicle miles traveled (VMT) as the most appropriate measure of transportation impacts.

6.2 Legislative Intent and Application to San Francisco

As CMA for San Francisco, the Transportation Authority ensures that the City complies with CMP requirements including land use impact monitoring. The General Plan and the City Charter frame the City's process for reviewing land development impacts on the transportation network. Details about the City's land use development process within this framework can be found in Appendix 10. AB 1619, passed by the California State Assembly in 1994, stipulates that the CMA should prepare any countywide transportation plan. Pursuant to a December 1994 action, the Board of Supervisors directed the Transportation Authority to prepare a countywide transportation plan, and to coordinate City Departments.

The Transportation Authority adopted SFTP 2050 in December 2022, as Phase 3 in the ConnectSF long-range planning process. Connect SF is a multi-agency collaborative process to build an effective, equitable, and sustainable transportation system for San Francisco's future. ConnectSF has defined a 50-year vision of San Francisco's future that represents our priorities, goals, and aspirations as a city within the larger Bay Area. ConnectSF developed a long-range vision for 2065 that served as the underpinning of SFTP 2050.

The Transportation Authority will advance the SFTP 2050+, a minor update to SFTP 2050. SFTP 2050+ is a limited and focused update that will incorporate PBA 2050+ revisions to revenues, including strategies to address the transit fiscal cliff, reflect post-pandemic travel behaviors to refine SFTP investment strategies and recommendations. The project will incorporate public engagement and coordinate with agency partners and other interested parties.

Further details on the consistency of SFTP with long term strategic goals of the General Plan can be found in Appendix 10.

6.3 Uniform Methodology

The Transportation Authority, as CMA, retains its own GIS database and travel demand model to analyze transportation and provide uniform assumptions for City departments. For major land use decisions, the Transportation Authority's tools are used to assess transportation impacts and ensure that the methodology used to assess them is consistent with MTC models and ABAG data. A model consistency report is developed during each CMP monitoring cycle to demonstrate this (see Appendix 12).

The primary purpose of the land use analysis program is to inform decisions on the supply of transportation infrastructure to the City and how the City should best spend scarce transportation dollars. This program adds no new requirements to the existing local project environmental review process, but it provides a long-term transportation investment policy

context for local environmental review. It also informs decision-making in the reverse direction: as CMA, the Transportation Authority is responsible for commenting on local land use decisions and making such comments with an understanding of how land use choices will shape future transportation demand. With the passage of California Senate Bill 743 and the use of vehicle miles traveled (VMT) as a primary metric for determining traffic related environmental impacts, review of land use projects is now more consistent with other goals in the SFTP and related City documents.

6.4 Institutional and Policy Framework for a CMP Land Use Analysis Program

6.4.1 Voter Mandate

When voters approved Prop K in November 2003, they approved various policies and priorities in the Expenditure Plan designed to implement San Francisco's Transit First policy and improve the coordination of land use and transportation. The Expenditure Plan directs the Transportation Authority to "give priority for funding to major capital projects that are supportive of adopted land use plans with particular emphasis on improving transit supply to corridors designated for infill housing and other transit-supportive land uses." Voters approved the Prop L sales tax in 2022 to supersede Prop K and the Prop L Expenditure Plan which will continue this legacy of coordinating land use and transportation through investments from its Transportation Systems Development and Management category, including the new Development Oriented Transportation program.

6.4.2 MTC / CMA Transportation / Land Use Work Plans

MTC provides the nine Bay Area CMAs with a share of regional planning funds ("3% Planning Funds") to support local and county-level planning functions established under state and federal law. These activities include the development of the CMP. The Transportation Authority focuses on the following activities to help integrate transportation and land use decisions:

- Prioritize transportation planning funds and capital investments that support coordinated land use and transportation development;
- Provide technical guidance and assistance with the planning process to partner agencies, communities, and project sponsors;
- Promote legislative activities that encourage smart growth, more sustainable transportation and development-related investment decisions by the City and developers, and also more efficient travel decisions by all transportation system users;
- Coordinate county-level input into the regional Sustainable Communities Strategy (SCS), the RTP, and related regional land use planning efforts;
- Conduct project and program delivery oversight to ensure efficient use of funds and effective project delivery.

More details about the coordination between CMA and regional land use can be found in Appendix 10.

6.4.3 Plan Bay Area, Priority Development Areas, Housing Incentive Program and Transit Oriented Communities

ABAG and MTC encourage compact, transit-oriented development through the identification of Priority Development Areas (PDAs), Priority Conservation Areas (PCAs), and Transit Oriented Communities (TOCs). In May 2019, the MTC Commission and ABAG Executive Board adopted an update to the Regional Growth Framework, including updates to PDA and PCA definitions, and a new Priority Production Area (PPA) pilot program. As of September 2025, San Francisco has nominated fifteen PDAs and one PPA (Figure 6-1), and twelve PCAs (Figure 6-1b).

In September 2022, MTC adopted the Transit Oriented Communities Policy, which identified locations near fixed route transit that would be prioritized for investment if supportive housing, land use, parking, and mobility policies are adopted by the local jurisdictions. San Francisco has 164 of the region's 384 TOCs, by far more than any other jurisdiction (Figure 6-1c).

Figure 6-1. Priority Development and Priority Production Areas in San Francisco

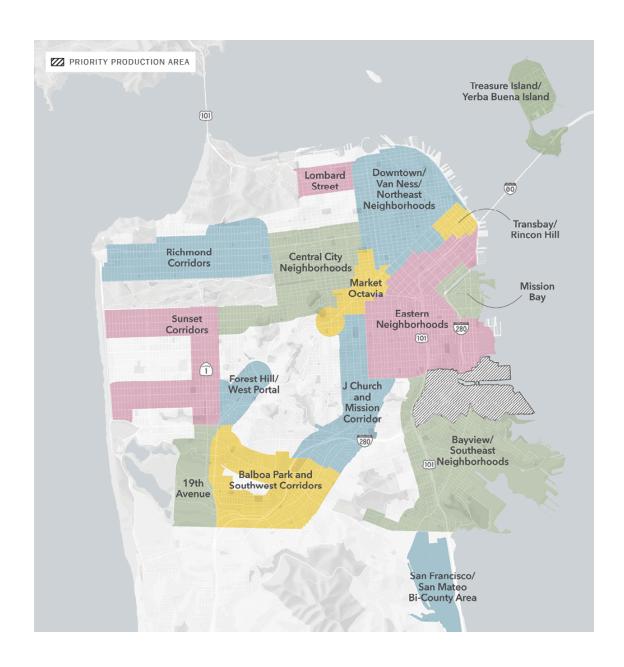


Figure 6-1b. Priority Conservation Areas in San Francisco

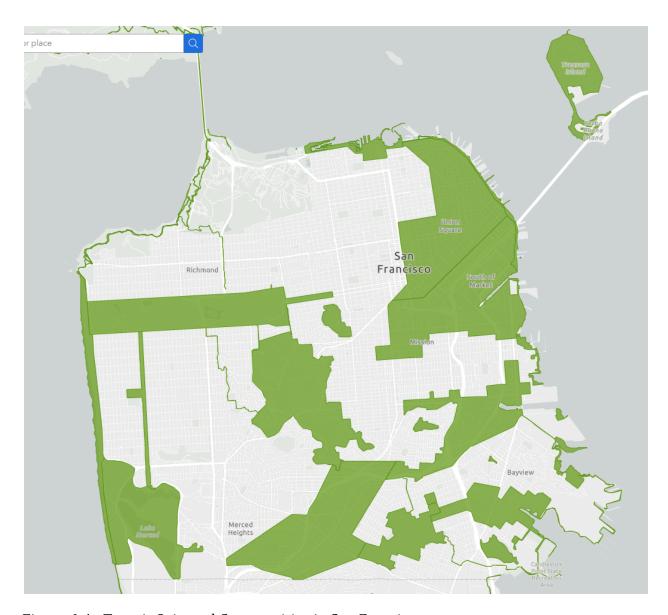
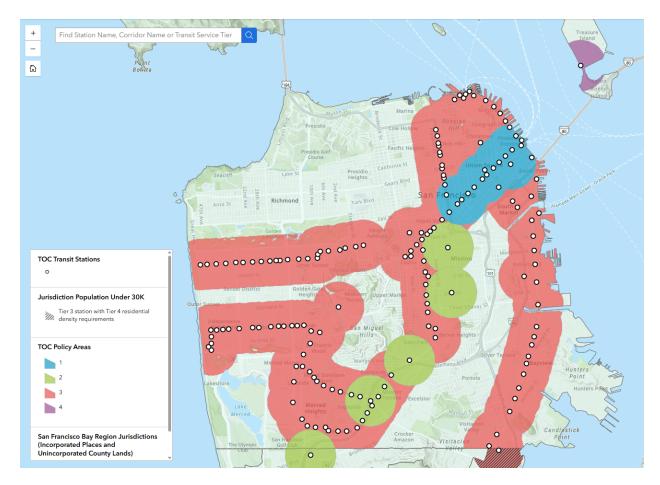



Figure 6-1c Transit Oriented Communities in San Francisco

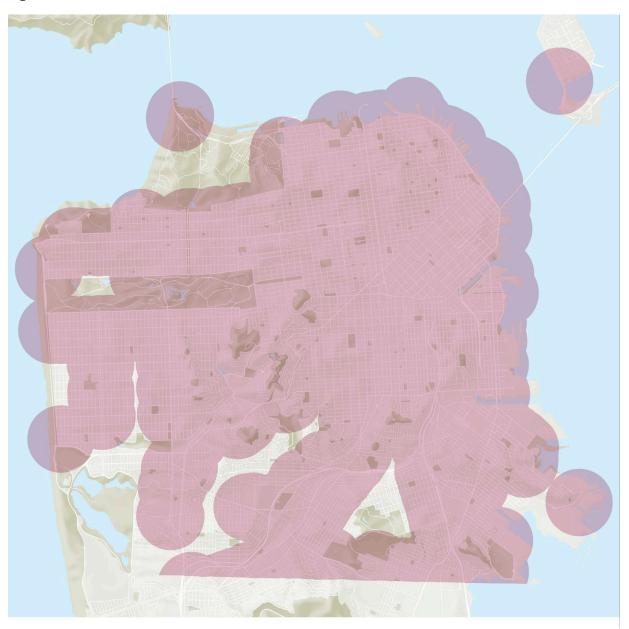
As a part of Plan Bay Area, the region has begun to identify more robust funding incentives for TOCs, PDAs, and PCAs through the One Bay Area Grant (OBAG) framework.

Details on the OBAG funding framework, and on local PDA planning projects in San Francisco can be found in Appendix 10.

6.4.4 Infill Opportunity Zones

Senate Bill 1636 (Figueroa 2002) granted local jurisdictions the authority to designate Infill Opportunity Zones (IOZs) in areas meeting certain specified requirements. Within a designated IOZ, the CMA is not required to maintain traffic conditions to the automobile level of service (LOS) standard.

Senate Bill 743 (Steinberg 2013) revised the criteria to designate an IOZ. An area may be designated as an IOZ if it is:


- within one-half mile of a major transit stop or high-quality transit corridor (defined as a corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours) included in a regional transportation plan (RTP);
- consistent with the general plan and any applicable specific plan; and

• a "transit priority area" within a sustainable communities strategy or alternative planning strategy adopted by the applicable metropolitan planning organization.

The Board of Supervisors first designated an IOZ in 2009 in accordance with SB 1636, then updated the area designated as an IOZ under SB 743 in September 2024.

A map of the current IOZ in San Francisco is shown in Figure 6-2. The Board of Supervisors resolutions, memoranda, maps, and GIS files on the IOZ designation and update can be found on the Transportation Authority's Congestion Management Program reports & documents page.

Figure 6-2. San Francisco IOZ

State congestion management law requires CMAs to establish vehicle level of service (LOS) standards for a designated countywide network of roadways (see Chapter 3). Within a designated IOZ, CMP automobile LOS standards are not applicable. Instead, an alternative metric can be applied for local analysis of transportation impacts. In 2016, the San Francisco Planning Commission removed LOS as a significant impact on the environment and replaced it with a vehicle miles traveled (VMT) threshold for all CEQA determinations. This applies to all projects, whether or not they are within a designated IOZ.

6.4.5 Regional Land Use Forecasts

For some forecasting activities, the Transportation Authority is required to use regionally-adopted projections of future Bay Area land use growth, including the distribution and nature of that growth across the region's individual jurisdictions. In 2021, ABAG adopted its most recent regional land use forecast as part of Plan Bay Area 2050, which indicates that San Francisco will absorb over 213,000 additional households between 2015 and 2050, bringing the number of households to 578,000. Employment in San Francisco is projected to increase by 236,000 jobs between 2015 and 2050, bringing the total to more than 918,000 jobs located in the city.

In January 2023, the Housing Element 2022 Update was adopted, responding to San Francisco's RHNA assignment of planning for 80,000 housing units. It is San Francisco's plan for meeting housing needs for the next 8 years, from January 31, 2023 to January 31, 2031. The update is the City's first housing plan centered on racial and social equity. The goals of the update were to recognize the right to housing, repair harms of racial and ethnic discrimination, foster racial and social inclusive neighborhoods, provide sufficient housing for existing residents, and promote well connected, healthy, and culturally rich neighborhoods. Its policies and programs express San Francisco's collective vision for the future of housing, policymaking guidance, housing programs, and the allocation of resources. These policies and programs address constraints to housing production, affirmatively further fair housing, environmental justice issues, equal housing opportunities, development of housing, existing housing stock, and the preservation of units at risk of conversion from affordable to market rate. The update and policies were developed through robust outreach and engagement. The extensive outreach was accompanied by the required analysis of housing needs, site inventory, and government and non-government constraints, as well as the evaluation of the 2014 Housing Element and an assessment of fair housing.

In June 2025, Mayor Lurie introduced the San Francisco Family Zoning Plan. The Family Zoning Plan is a set of changes to San Francisco's zoning rules that will allow new homes to be built in more neighborhoods across the City. These changes are required by state law and emphasizes property in the western and northern parts of San Francisco, specifically in and near the areas designated by the state as Housing Opportunity Areas, or neighborhoods with greater access to parks, quality schools, better environmental conditions, and higher median incomes. The plan aims to expand housing affordability and availability by allowing for increased density throughout the City, especially along transit and commercial corridors, in order to meet San Francisco's Regional Housing Needs Allocation requirements set by the State of California.

6.5 Neighborhood Transportation Planning

The Transportation Authority supports community-based transportation improvements by leading and funding neighborhood-focused transportation planning studies. These efforts help address community transportation concerns and engage community leadership in the transportation planning process, especially in underserved and disadvantaged communities. Since the authorization of Prop K in 2003, the Transportation Authority, working with other agency partners, has completed more than a dozen neighborhood transportation plans, many of which were funded with grants from the Metropolitan Transportation Commission's Community Based Transportation Planning (CBTP) program, which focuses planning resources in minority and low-income communities.

The Transportation Authority also manages the Neighborhood Transportation Program (NTP), a Proposition L funded program established to support community-based neighborhood-scale planning efforts and transportation improvements in San Francisco neighborhoods, especially in underserved neighborhoods and areas with vulnerable populations (e.g. seniors, children, and/or people with disabilities). The NTP has a planning component to fund community-based planning efforts in each Supervisorial district, and a capital component intended to provide local match to help advance and implement capital investment and pilot recommendations stemming from NTP and other community-based planning efforts. The goal of the program is to help neighborhoods create a pipeline of grant-ready projects that have a high degree of community and agency consensus. Another objective of the program is to increase the capacity of neighborhoods and Community-Based Organizations (CBOs) to undertake neighborhood transportation planning.

A list of plans developed with the support of the Community Based Transportation Planning program and the Neighborhood Transportation Improvement Program can be found in Appendix 10.

6.6 Transportation Impact Analysis

The CMP-based land use analysis program links the City's land development decisions to conditions on the regional transportation system. This link already exists at the regional level in MTC's Regional Transportation Plan (RTP), which links long-range planning for transportation investment with estimates of land development based on regional demographic growth and economic development. San Francisco's approach to conformance with the CMP land use impacts analysis requirements is based on the existing process administered by the Planning Department. The Planning Department works from its Transportation Impact Analysis Guidelines for Environmental Review. In 2019, the San Francisco Planning Commission adopted new Transportation Impact Analysis Guidelines, following their 2016 action to remove LOS as a significant impact on the environment and replaced it with a vehicle miles traveled (VMT) threshold for all CEQA determinations. The Transportation Authority supports the Planning Department and other City agencies evaluation of CEQA transportation impact analysis by providing data and tools to measure VMT, consistent with SB 743, for assessing transportation impacts. More information on CEQA transportation impact analysis can be found in Appendix 10. The Transportation

Authority also coordinated with other San Francisco agencies to develop the <u>Transportation Sustainability Fee (TSF)</u>, an impact fee on new developments to fund transit improvements to offset impacts established through a nexus study. The TSF <u>fee schedule</u> is updated to account for inflation. The TSF replaced the Transit Impact Development Fee (TIDF), originally established in 1981.

6.7 Work Program

The Transportation Authority will continue to work jointly with City departments and regional agencies to assess the transportation impacts of planned growth, to better link transportation and land use planning, and advance climate change-related goals related to transportation. Specifically, the Transportation Authority will:

- Support the development of the regional land use model.
- Continue to develop applications of land use data within the GIS and model databases to conduct multimodal performance measurement and analysis (e.g., the relationship of land use patterns to transit usage and coverage).
- Adopt Five Year Prioritization Programs (5YPPs) for Prop L funding as the first step in implementing the transportation improvements recommended in the San Francisco Transportation Plan, SFTP 2050.
- Participate in statewide, regional, and local SB 375 implementation activities by coordinating San Francisco input into Plan Bay Area 2050+ and advocating for San Francisco priorities in such activities as the programming of One Bay Area Grant (OBAG) funding and the application of MTC's TOC Policy.
- Continue development of the Neighborhood Transportation Program's efforts to support planning and capital projects.
- Coordinate with city partners to regularly update the Transportation Investment and Growth Strategy (updated in February 2022), to show how the city can accommodate equitable and affordable housing growth around strategic transportation investments.
- Continue to review and provide technical support to ongoing area plans and land use studies under development, including PDA projects, on an as needed basis.

Chapter 7

Capital Improvement Program

KEY TOPICS

- Legislative Requirements
- Relationship to Other Plans
- Relationship to City Department Activities
- Funding and Programming
- Amendment
- Project Delivery

7.1 Legislative Requirements

California Government Code 65089(b)(5) requires that the CMP contain a seven-year Capital Improvement Program (CIP), developed by the Congestion Management Agency (CMA), the Transportation Authority for San Francisco, to maintain or improve the transportation system performance measures established in the CMP, and to address impacts on the regional network, as identified through the land use impact analysis program.

7.2 Relationship to Other Plans

7.2.1 Regional Transportation Plan and Countywide Transportation Plan

The CMP statute requires that each CMP be consistent with the long-range Regional Transportation Plan (RTP), and each county's component of the RTP must be supported by a long-range countywide transportation plan (San Francisco Transportation Plan, or SFTP), developed by the CMA. The CIP is intended to serve as a short or medium-range implementation vehicle for investment priorities as prioritized in the long-range plans.

Additional details on the RTP and SFTP can be found in Appendix 11.

7.2.2 Prop L and AA Expenditure Plans

San Francisco voters in November 2022 approved Proposition L, the half-cent sales tax for transportation, and adopted a new 30-year Expenditure Plan, superseding the Proposition K sales tax on April 1, 2023. The 30-year Expenditure Plan directs \$2.6 billion (in 2020 \$'s) to a list of transportation projects that are intended to help implement the long-range vision for the development and improvement of San Francisco's transportation system, as articulated in the San Francisco Transportation Plan (SFTP) 2050. In 2010, San Francisco voters approved Prop AA, authorizing an additional \$10 vehicle registration fee on motor vehicles registered in San Francisco. Prop AA revenues fund projects in a 30-year Expenditure Plan and are meant to complement Prop L funds.

7.2.3 Bay Area Clean Air Plan

The Transportation Authority ensures that the CIP conforms to air quality mitigation measures for transportation-related vehicle emissions, as detailed in the Bay Area Air Quality Management District's (BAAQMD) Clean Air Plan and related documents. This also raises San Francisco projects' competitiveness for external funds, since the MTC gives priority to proposed projects that support or help implement the mitigation measures outlined in the 2017 Bay Area Clean Air Plan as developed and adopted by BAAQMD.

See Appendix 9 for San Francisco's trip reduction efforts in relation to the regional mitigation measures.

7.2.4 Other Capital Plans and Short Range Transit Plans

Each City department develops its own capital investment plans for inclusion in San Francisco's ten-year Capital Plan. In addition to the citywide Capital Plan, the SFMTA has multiple short-term and long-term processes to prioritize its capital needs, including its 2021 – 2025 Capital Improvement Program, Strategic Plan, Transit Fleet Management Plan, Short Range Transit Plan, and the 2017 Facilities Framework. Five regional transit operators that serve San Francisco also develop their own capital plans and Short Range Transit Plans: BART, AC Transit, SamTrans, Golden Gate Transit, and Caltrain. The Transportation Authority considers these plans as an input into its programming process to facilitate better coordination of San Francisco programming decisions with citywide and regional priorities in compliance with CMP requirements. Also see Section 7.3.

7.2.5 San Francisco General Plan

The San Francisco City Charter assigns responsibility to the Planning Department for consistency review of capital improvements with the General Plan. This consistency review function is incorporated into the Transportation Authority's CIP programming process. If necessary, projects in the CIP may be submitted to the Planning Department for a General Plan consistency check. However, in practice, this is not typically required as the SFTP is consistent with the General Plan.

7.3 Relationship to City Department Activities

Each City department or other eligible project sponsor develops its own capital investment plans. The Transportation Authority steers the overall multi-agency programming strategy and analysis of trade-offs, with a particular focus on the fund sources included in this CIP. The Transportation Authority review process uses information already developed by project sponsors. The most significant value added by the Transportation Authority's review process is in providing an overall context for transportation programming strategy and system performance to facilitate Transportation Authority Board decisions. Key roles and responsibilities of the City departments and the Transportation Authority in the transportation programming process are summarized below.

7.3.1 City Departments

- 1.Prepare plans, prioritize capital improvement programs and develop financial plans on an annual or biannual basis.
- 2.Use financial constraints and strategies imposed by external agencies in addition to those established by the Transportation Authority and departments for various funding sources.
- 3.Revise financial plans at regular intervals to reflect changes in project scope, budget or schedule, and changes in funding projections
- 4. Process CIP amendments through the Transportation Authority, and obtain Transportation Authority Board approval or administrative review.
- 5.Check eligible project list consistency with the San Francisco General Plan before adoption by the Transportation Authority Board (performed by the Planning Department).
- 6.Make prioritization recommendations at the time of eligible project consistency review.

7.3.2 Transportation Authority

- 1.Develop, adopt, and update the CMP and its CIP.
- 2. Process CIP amendments according to the established procedures.
- 3.Provide input into the MTC, state, and federal agencies' process for the preparation and updates of the Regional, State, and Federal Transportation Improvement Programs (RTIP, STIP, and TIP) in coordination with sponsors.
- 4. Provide Prop L and Prop AA revenue estimates and advise on financial strategies.
- 5.Develop Prop L and Prop AA Strategic Plan and 5YPP updates to respond to revisions in departments' and other project sponsors' (e.g. regional transit operators) capital and financial plans.
- 6. Notify outside programming agencies of decisions on CIP amendments.
- 7.Program the Prop L, the Prop AA, 50% of the TNC Tax revenues, and the local (40%) portion of the TFCA funds, as well as discretionary funds as directed by the MTC, state, and federal agencies.

7.4 Funding and Programming

Listed below are major CIP funding sources administered by the Transportation Authority. Importantly, as described in the Relationship with Other Plans section, the Transportation Authority ensures that all CIP projects, as well as the programming and project selection processes, are consistent with the RTP, SFTP, and other requirements attached to the funding.

Detailed descriptions of each funding source listed can be found in Appendix 11:

• Surface Transportation Program / Congestion Mitigation Air Quality Program

- State Transportation Improvement Program
- Prop L Transportation Sales Tax
- Prop AA Vehicle Registration Fee
- Transportation Fund for Clean Air
- State Transit Assistance County Block Grant Program
- Senate Bill 1 Local Partnership Program Formulaic Shares
- Prop D Traffic Congestion Mitigation Tax (TNC Tax)

7.5 Amendment

The previous sections describe the central role of the CMP in establishing standards and measuring or otherwise assessing the performance of the multimodal transportation system, and the role of the CIP in helping to maintain that level of performance. Any proposed changes to CIP projects must therefore first be assessed by the Transportation Authority for potential effects on the system performance. There are two kinds of CIP amendments: policy level and administrative level. These types of amendments are described in detail in Appendix 11, which also described the applicability of CIP amendments, and the amendment process.

7.6 Project Delivery

One of the key purposes of the CMP is to establish the link between transportation investment and system performance. Programming projects in the CIP is only half of the picture. To be effective, the CIP must also function as a transportation project delivery mechanism. Failure to deliver projects or delays in implementation can affect system performance. Further, depending upon the fund source, delay in obligating funds or implementing a project can result in loss of funds to the project, to San Francisco, and/or to the Bay Area. In the long run, poor project delivery rates can influence state and federal authorization levels for transportation funding, leading to fewer resources to dedicate to maintaining and improving the transportation system.

The Transportation Authority has mechanisms in place for tracking Prop L, Prop AA, and TNC Tax project delivery (i.e., the Strategic Plan, 5YPPs, the Portal, MyStreetSF.com, and ongoing project management oversight activities). As a CMA, the Transportation Authority continues to work with the MTC and Caltrans to monitor project delivery rates for projects programmed in the RTIP and federal TIP and serve as a resource to facilitate and advocate for San Francisco sponsors.

7.7 Inter-Agency Work Program

The Transportation Authority will continue to work jointly with city partners and other eligible project sponsors to recommend funding for projects identified in capital investment plans, and steer the programming strategy and analysis of trade-offs with a particular focus on Transportation Authority Board decisions for the fund sources noted in this chapter.

Chapter 8

Travel Demand Model and Uniform Database

KEY TOPICS

- Legislative Requirements
- Legislative Intent and Application to San Francisco
- Technical Approach
- Work Programs Items

8.1 Legislative Requirements

California Government Code section 65089(c), requires that each Congestion Management Agency (CMA), in consultation with the regional transportation planning agency (the Metropolitan Transportation Commission (MTC) in the Bay Area), the county, and local jurisdictions, develop a uniform database on traffic impacts for use in a countywide transportation computer model. The CMA must approve computer models used for county sub-areas, including models used by local jurisdictions for land use impact analysis. All models must be consistent with the modeling methodology and databases used by the regional transportation planning agency.

8.2 Legislative Intent and Application to San Francisco

Congestion management legislation was enacted in part to help transportation planning agencies identify the source of the transportation impacts of land use decisions. All Bay Area counties except San Francisco include multiple local jurisdictions each of which has authority over land use within its boundaries. The transportation impacts of decisions made in one local jurisdiction are felt across local jurisdictional boundaries. The travel demand model is intended as a technical tool to analyze land use impacts across local jurisdictions from a uniform technical basis.

As a unified City and County, San Francisco is spared the need to estimate transportation impacts across city boundaries, although inter-county impacts must still be considered. San Francisco's travel demand forecasting challenge is primarily the forecasting of travel by modes other than the private automobile, (e.g. transit, pedestrian, and cycling trips).

8.3 Technical Approach

The Transportation Authority continually updates and refines their travel demand forecasting model, San Francisco Chained Activity Modeling Process (SF-CHAMP). Since the creation of the original San Francisco model in 2000, the model's geographic scope has been extended to the full nine-county Bay Area, along with significant improvements to pricing sensitivity and time-of-day modeling. The Metropolitan Transportation Commission (MTC) has developed an activity-based model with a similar structure. In 2018 the Transportation Authority adopted a new demand model — DaySim — within SF-CHAMP that offers significant improvements in several areas. SF-CHAMP 6.1 includes greater temporal detail, a wider variety of activity purposes, smaller zonal resolution, a TNC mode,

and the ability to test autonomous vehicle scenarios, among other features. Since DaySim is an open-source demand model that is also used in other regional travel demand models, the Transportation Authority can benefit from improvements made by other regions. In 2023 and 2024 the Transportation Authority developed an updated model version, CHAMP 7(BCE), calibrated to 2019 ("before Covid era") conditions and informed by the Bay Area Travel Study 2018/2019. Later in 2024 the Transportation Authority also developed CHAMP 7CE to reflect 2023 ("Covid era") conditions. Calibration of CHAMP 7CE was informed by the 2023 Bay Area Travel Survey. The Transportation Authority is initiating the development of CHAMP 8, which will incorporate ActivitySim, an open source travel demand model system and will scope the development of features to support Treasure Island Mobility Management Agency's (TIMMA) modeling needs.

The Transportation Authority continues to use its Geographic Information System (GIS) database as a supplemental analysis tool for appropriate CMP purposes. The model is integrated with the Transportation Authority's GIS database. GIS is ideally suited for the graphic display of model outputs and more detailed spatial analysis. In 2024 the Transportation Authority further integrated GIS capabilities into SF-CHAMP using Simwrapper to develop interactive dashboards, called "topsheets.", to display key model output data. In 2025, the Transportation Authority added interactive validation workbooks also using Simwrapper. Together, GIS and SF-CHAMP can be very effective both for sketch planning and the policy-level travel demand and performance forecasting exercises associated with long-range planning. The Transportation Authority's integrated model and GIS allow the ready presentation of data using graphics and maps.

The Transportation Authority also collects, curates, and publishes other datasets to support planning, forecasting, and analysis. To improve this practice, the Transportation Authority is developing a data strategy to identify and prioritize data collection needs, and establishing data collection procedures.

A detailed description of the SFCTA's technical approach to modeling can be found in Appendix 12.

8.4 Work Program Items

The Transportation Authority will continue to work collaboratively with the Planning Department, MTA, other City agencies, regional transit operators, Caltrans, and MTC to:

- Continue to apply the model to assess impacts of policy and transportation changes on local and regional trip making behavior and network conditions. SFTP 2050+, Westside Network, The Portal (DTX), Freeway Network Managed Lanes Study, Tax Scenario Modeling, Treasure Island Mobility Management Agency support, and other ongoing projects will depend heavily on modeling support.
- Continue refinement of CHAMP 7CE (post-COVID model) calibration and validation.
 Initiate development of CHAMP 8 Activity Sim model, including scoping model development and data collection to implement features to support TIMMA modeling
- Support ongoing data collection and analysis of large scale travel diary surveys in partnership with MTC and SCVTA.

- Continue to support the development of ActivitySim, an open-source, public agency-supported implementation of an activity-based travel demand model.
- Implement CHAMP 8 using the ActivitySim demand model
- Develop a Data Strategy to identify and prioritize data collection needs, establish data collection procedures. .

Bibliography

Bibliography

AC Transit.

https://www.actransit.org/

Bay Area Rapid Transit. https://www.bart.gov/

California Government Code Title 7, Division 1, Chapter 2.6 (sections 65088 – 65089.10) 'Congestion Management'.

https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=GOV&division=1.&title=7.&part=&chapter=2.6.

California Transportation Commission. Local Partnership Program (LPP) - Formulaic. https://catc.ca.gov/programs/sb1/local-partnership-program/local-partnership-program-formulaic

Caltrain.

https://www.caltrain.com/

Golden Gate Bridge Highway & Transportation District.

https://www.goldengate.org/

Metropolitan Transportation Commission Planning Committee. MTC Resolution No. 3000, Revised — Congestion Management Program Policy (Updated Apr 2025). File # 25-0428. https://mtc.legistar.com/LegislationDetail.aspx?ID=7294023&GUID=9006B969-C51F-4C2 3-8222-91B77A76B946

SamTrans.

https://www.samtrans.com/

San Francisco County Transportation Authority. Congestion Management Program: Reports & documents

https://www.sfcta.org/projects/congestion-management-program#panel-reports-documents

San Francisco County Transportation Authority. Lifeline Transportation Program. https://www.sfcta.org/funding/lifeline-transportation-program

San Francisco County Transportation Authority. One Bay Area Grant Program. https://www.sfcta.org/funding/one-bay-area-grant-program

San Francisco County Transportation Authority. Prop AA Vehicle Registration Fee.https://www.sfcta.org/funding/prop-aa-vehicle-registration-fee

San Francisco County Transportation Authority. Prop K Transportation Sales Tax: Prop K Expenditure Plan Summary.

https://www.sfcta.org/funding/prop-k-transportation-sales-tax#panel-reports-and-documents

San Francisco County Transportation Authority. Prop L Transportation Sales Tax: Prop L Expenditure Plan Summary.

https://www.sfcta.org/ExpenditurePlan

San Francisco County Transportation Authority. San Francisco Freeway Network Management Study.

https://www.sfcta.org/projects/san-francisco-freeway-network-management-study

San Francisco County Transportation Authority. TNC Tax.

https://www.sfcta.org/funding/tnc-tax

San Francisco County Transportation Authority. Transportation Fund for Clean Air. https://www.sfcta.org/funding/transportation-fund-clean-air

San Francisco Municipal Transportation Agency (SFMTA). Muni. https://www.sfmta.com/muni-transit

San Francisco Municipal Transportation Agency (SFMTA). Bicycle Ridership Data. https://www.sfmta.com/bicycle-ridership-data

San Francisco Municipal Transportation Agency (SFMTA). Muni Service Map. https://www.sfmta.com/maps/muni-service-map

San Francisco Municipal Transportation Agency (SFMTA). Performance Metrics. https://www.sfmta.com/performance-metrics

San Francisco Municipal Transportation Agency (SFMTA). SFMTA Strategic Plan — Fiscal Year 2022 – 2024.

https://www.sfmta.com/reports/sfmta-strategic-plan-2021-2024 and https://www.sfmta.com/reports/sfmta-strategic-plan-fiscal-year-2022-2024

San Francisco Planning Department. Transportation Impact Analysis Guidelines. https://default.sfplanning.org/publications_reports/TIA_Guidelines.pdf

Vision Zero SF. Action Strategy 2021 – 2024.

https://www.visionzerosf.org/about/action-strategy/

- **y** @sfcta
- **f** @sfcta
- in linkedin.com/company/transportation-authority
- O @sfcta
- sfcta.org/stay-connected

1455 Market Street, 22nd Floor, San Francisco, CA 94103

TEL 415-522-4800

EMAIL info@sfcta.org

WEB www.sfcta.org

