San Francisco Dynamic Traffic Assignment Project
“DTA Anyway”

Final Methodology Report

Prepared by:

Parsons Brinckerhoff bt
&

San Francisco County Transportation Authority

WCISCo
&t Co

S
3

E

3

7

Yo

Q>

%,
oﬂny k“\

o S
Prarion ¥

November 28, 2012

1. Introduction

In 2010, the San Francisco County Transportation Authority (The Authority) received a grant from the

Federal Highway Administration (FHWA) to implement a dynamic traffic assignment (DTA) model for San
Francisco. Thi s pr o] e cuildsupanagpreviohsrDdAvmodehdevelopBdlfok Any w
t he Northwest quadrant of thlkecéelty, maddl seteksuse |
in project applications in the remainder of the city.

The project also seeks to be useful to deslap DTA models in other regions in three ways. First, it

involves building a flexible toolset to facilitate the development of future DTA models. Second, it

documents the process and assumptions used to develop the model, hoping to serve a®tbestample

practice. Finally, several particularly challenging questions are studied:

0 How does DTA perform in a dense and highly congested grid network?
0 How can DTA be used to study the interaction of the street network with the transit system?
0 What benefié might DTA provide in evaluating congestion pricing policies?

This report describes the final methodology used by the resulting San FrancisceDD A rttiidel.
Several accompanying resources are available to provide a more complete picturectfittodupiings
0 Project Website and Code B@se Appendix A ardtp://dta.googlecode.corThis site was used
by the project team as a collaboration and dissemination tool. The source code for the conversion
toolsis available for download, as are all relevant documents.

0 DTA Anyway API Documentatioht{p://dta.googlecode.com/git
history/dev/doc/_build/html/index.html#): Thissite provides an overview of the classes and
scripts included in DTA Anyway.

0 Final Calibration and Validation Report: While all model parameters and settings are listed here, the
calibration process and validation results are documented separd&lyommintain parsimony.

0 Analysis of Applications Report: Presents the results of model applications.

0 Model Integration Options Report: This report presents a range of options forDow &fd the

San Francisco Chained Activity Modeling Proces3HAMP) can be better integrated in the

future.
0 Future Research Topics Report: The plan for future development and integration. Note that this
document is distinct from the Model Integration Options report in that it was completed after the
peer review so is able to incorporate that feedback. Ak,atliesable to present recommendations
for future development rather than simply options.
Peer Review Panel Report: Comments from the peer review for this project held on July 25, 2012.
Response to Peer Review Comm@ppendix B)Documents changewsmde based on the
recommendations of the panelists.

O« O«

The remainder of this report is structured as follows. Chapter 1 provides an overview of the model system
and the context. Chapter 2 describes the development of all model inputs (which invalikexf the b

effort) and the tools used to create or convert those inputs. Chapter 3 describes the final model parameters,
as well as a brief overview of the calibration and validation process. Chapter 4 presents the results of a series
of sensitivity test Chapter 5 summarizes the lessons learned.

1.1 Study Area and Policy Issues

San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

http://dta.googlecode.com/
http://dta.googlecode.com/git-history/dev/doc/_build/html/index.html
http://dta.googlecode.com/git-history/dev/doc/_build/html/index.html

San Francisco County has a population of approximately 800,000 within a region populated by approximately
7.2 million people Surrounded on three sides by water and on #hsifle by a small mountain range, San
Francisco is connected to the rest of the region via two bridges: the Golden Gate to the North and the Bay
Bridge to the East, two freeways to the soutl:01&nd-280, a Transbay Tube that carries BART heavy

trangt rail, and a network of ferries.

Peak period traffic congestion has been a problem for auto and transit users alike, with average speeds
downtown averaging ten mph and eight mph respéctfRdgiperiod crowding on transit services keep

potential sers waiting while buses and trains repeatedly pass them up because they are too full. Congestion
from the freeway system backs up daily onto city streets in the SoMa district, bringing cars and buses alike to
a standstill.

In order to meet local go&ds green house gas reduction, economic vitality, and [iy&ality-rancisco is
considering effective demand reduction strategies such asbasetbnongestion pricing as well as
investment in cosffective transit efficiency strategies such aagpidgransit (BRT). Many of the
guestions that planners have been asking in the context of these strategies have been difficult to answer
confidently within the confines of the shasedi c tr a
travel demand model €HAMP* Among the questions that have been asked:
0 What streets experience speed improvements with congestion pricing and how does transit perform
compared to autos?
0 Where is downtown congestion coming from and going to? Whermpéeapehis corridor going
from and going to? How many of them have origins or destinations outside of the corridor and are
thus easily divertible?

0 Where does traffic divert to with the implementation of this project?

Dynamic traffic assignment (DTgtpbmises to be able to answer these questions with more confidence.
Specifically, DTA:

1 produces feasible traffic flows rather than over capacity demand,

2 allows queues to affect upstream and downstream links,

3 is sensitive to operational strategiesasisignal timing, and

4 represents specific vehicles classes such as transit (and is therefore able to produce separate

performance metrics for them).

Item one brings up an interesting point about whether projects should consider forecast demand regardless o
hard capacity constraints, or a realistic predicted volume. Forecast demand represents demand for a facility
without explicit capacity controls. Consequently, forecasted demand can sometimes greatly exceed realistic
capacity. A slightly more restvietbption is to forecast capaditipprmed demand, where a harsh penalty is
applied to all demand that uses an-oseacity facility. While it is useful to understand demand for a facility,
even under conditions of onerous travel times, this informgtionuseful in determining what operational
impacts would actually occur. By limiting capacity and providing a more accurate estimation of travel times,
realistic predicted volumes allow planners and traffic engineers to better understand arelylan for li
operational conditions on the road network. Neither of these representations of demand volume tells the

' Census 2010

? sfmobility.org

> www.sfcta.org/sftp

“ www.sfcta.org/modeling

San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

entire story, but together they can provide a deeper and more nuanced picture of future travel characteristics
and traffic operations than eithegasure alone. In short, DTA may help to provide more comprehensive
information in conjunction with existing static assignment tools.

1.2 A Growing Toolbox

San Fr anGHAMPcaotiGitghas&dHRravel demand model has been in continuous use for over a
decade. It has a very detailed street network and zone system within San Francisco. It includes every street,
alleyway, and transit stop within the city and zone sizes are often the size of a single block in the downtown
area and two to four blocks in theskirts of the city. SEHAMP v4.3Furyuses static user equilibrium

highway assignment and an iterative, capdoityed transit assignmentBecause the static user

equilibrium macroscopic traffic assignment does not contain enough detail peinmany studies, many

planning teams also rely upon network microsimulation models such as VISSIM to rgaierktine

network operations. In order to maximize the use of our budgets, ¥t&8IMreas are oftémited to a

very small portion of theetwork and tools such as Synchro are used inBtieact volumes from SF

CHAMP oftenneed to be manipulated in order to make sense to VISSIM. DTA has the potential to both
bridge the gap betweenrSHAMP and VISSIM and provide a more meaningful gghws, but also to

replace resource intensive microsimulation for instances where the questions can be answered with DTA
alone. The goal of this project is to provide a solid starting point for any project that wants to use DTA, but
not to give a projedevel validation across the entire city.

1.3 Previous DTA Applications

In Fall 2009, the Authority created and successfully used a subarea DTA model to examine the implications

of closing some ramps on US 101 for the purposes of construction. Thiedtdsilvarea DTA model

had 260 total zones, 3,000 nodes, 7,000 links, 240 traffic signals and 83 transit lines. Subsequently, this model
has been used to study the effects of the Geary BRT project. While the subarea model has proven successful,
there arseveral pitfalls that arose during its use that are discussed below.

Figure 1. San Francisco Northwest Subarea DTA Network

®Zorn, L., E. Sall, and D. Wu. “Incorporating crowding into the San Francisco activity-based travel model.”
Transportation 39 (2012): 755-771.

San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

1 DTA represents an ideal world of network level of service knowledge. This can often mean that
small shif in travel time can create drastic shifts away frontimeainadways that may or may not
be entirely true. Do drivers always know whether a slightly better alternate route exists on an
obscure local roadway? We could create some more specifizegeoesafunctions in our
citywide DTA calibration that attempt to mitigate the-timsrdiversion. However, the inertial
effect of staying on your O6initial routed has

T The subareads easter n b o uarcthgtheysubareatextracton pracess a r e
to assignh demand to specific streets in the grid. This proved to be very restrictive and often resulted
in strange results near the start of the subarea, but also farther west as well. We anticipate that the
citywide DTA eliminates this pitfall by using more natural boundaries (The Pacific Ocean, San
Francisco Bay, and San Bruno Mountain Range) with a limited number of external stations.

1 Volumes on smaller streets are very reliant on cesdrmidctor placementghich made LOS
analysis with the raw DTA results sometimes pr
were still required in order to achieve more realistic results at a small scale. This issue remains in our
citywide DTA calibration. Howeydris anticipated to be mitigated as a part of any gpesjelct
calibration process, which would involve the identification of parking facilities.

1.4 Model Development Approach

The DTA Anyway project has the primary objective of building a workingn®deA with results that make

sense for the PM Peak peri esdhoitnd Swond eHr abnuciilstc a.0 aR
specific task, it has the supporting objective of establishing a seamless process to maidAMdm t5F

DTA for its use ira multitude of projects into the future. This process uses@i¢/3FP network and

then builds a DTA network from it, allowing for changes to one network to be reflected in both models. The
San Francisco DTA also usesC3fAMP demand directly, resultinga behaviorally consistent approach

and avoiding the arbitrarindsat can result from synthetic matrix estimation approadner.al principles

were adopted to guide the model development process:

0 First, the process is automated as much as possialer to minimize both the schedule

requirements and the risk of error associated with human intervention. Therefore, code is written to
prepare model inputs, convert data formats, and summarize results. Any issues that cannot be
addressedinanam@at ed f ashi on, such as a network codin
wherever possible. This means that changes are made {6 H&BFnetwork that is converted

to the DTA network, rather thamadedirectly to the DTA network where they woudd b

overwritten with the next import.

Second, the model is based on real data as much as possible. If something can be readily measured,
we measured it. If something could not be measured, we sought some basis or justification for our
assumption. Onlyas | ast resort, did we make a change 0t
change is clearly documented. Thisdiatan approach is most evident in the determination of

traffic flow parameters, where we conducted extensive fieldwork to measerengthis,

response times, and other aspects of driver behavior. It also extends to the input development,

where we imported current signal timing plans (over 1,000 of them), stop sign locations and transit
routes throughout the city.

Third, the model as developed in a highly collaborative manner. The Authority and Parsons
Brinckerhoff staff worked together as part of an integrated team, sharing tasks to take advantage of

[@]3

[@]3

San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

the skill sets and availability of different individuals. The projectowetssia important tool to

facilitate this collaboration. The site is integrated with theeSibn control system for the source

code, includes an issue tracker to prevent details from slipping through the cracks, and was our
repository for sharing thesults of each model run and documentation on how to perform certain
tasks.

Fourth, any new code was developed in ansmpgoe environment, but we avoided rewriting
functionality that already exists elsewhere. The preference feowpercomes from a desire to

provide a platform for external collaboration, and the ladkesira to become a commercial

software vendor. We also recognize that is not a prudent use of resources to replicate functionality
that already exists and can be purchased for a reasonable price. The prime example of this is the
DTA package itself, inithcase Dynam®gThe Authority's experience with Dynameq has been that

it produces reasonable results, has a mature user interface, and a responsive developer. Therefore the
code written for this project focuses on the converting model inputs andisimgmesults. It

does not implement the assignment itself, nor does it provide a network editor or visualizer, which
are both available in Dynameq and most other DTA software.

It is worth noting that there are several topics left for future develofiese. include:

(@]

0 Rigorous validatlienelf@rappleiccdtiicompyr oj ect

0 An enhanced approach to modeling parking, including reconfiguring centroid connectors to load at
driveways;

0 Assigning people to transit trips (this is being done in patallEASIFTrips);

0 24hour DTA; and

0 Feedback to SEHAMP.

These topics are discussed in more detail in the Future Research Topics Report.

1.5 Model Overview

The model covers all of San Francisco, as shéuguie2. This allowed for a natural breakpoint at the San
Bruno Mountain State Park near the San Mateo County line where there are a limited number of external
stations. In this way, $HA is able to predict éhnorthsouth routing through the city, rather than relying

on fixed external station volumes through a dense part of the roadway network.

The road network includes every street in the city, with 976 traffic analysis zones (TAZs) and 22 external
stations The network includes actual phasing and timing plans for nearly every traffic signal in the city, about
1,115 in total (certain riidbck or pedestriannly signals are ignored). It also includes stop control at about
3,726 intersections based on al&}8r of stop signs in the city.

The demand for the San Francisco DTA is taken from a subarea extraction of the trip tables produced by SF
CHAMP. SFCHAMP covers the entire nineunty Bay Area, which is why the subarea extraction is

necessary. Theadway networks are also imported directly from the network representation used in SF
CHAMP, allowing for a direct linkage between the two models. The demand is currently segmented into
four user classes: autos, trucks, autos with toll, and trudkdl withere are currently no tolls within the

® http://dta.googlecode.com
" http://git-scm.com/
® https://www.inrosoftware.com/en/products/dynameq

San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

city, so the toll matrices are unused in the base year. They serve as placeholders for scenarios that have
cordonbased congestion pricing. The definition of user classes is flexible such that diseserdutthbe
used for a specific application.

et

o
T

g

7t Jaeve
CR AT L

LRty
T T

7.

2

Wi
W
My,

Ealle
vt

>

Figure 2. San Francisco County Study Area

The simtation is currently run for a Rdéak period. Demand is loaded from-2:30 pm, with the

simulation continuing until all traffic clears. Thehioue demand period includes a-boar warraup

period, a threbour P.M. peak period, and a-boer cooldown period. During the wasap period from

2:30 to 3:30 pnapproximately 76,300 cars and 13,000 trucks are loaded on to the network, and during the
cookdown period from 6:30 to 7:30 pm, roughly 68,300 cars and 6,000 trucks are loaded onto the network.
During the intermediate thraeur PM peak period in the base year, roughly 390,600 autos and 65,200 trucks
are loaded onto the network, with 220,700 internal car trips and 170,000 car trips originating or ending
outside the county study area. With wagvrtime, the reliable period ebults is approximately 3680

pm, corresponding to the thieeur P.M. peak assignment inRG3FAMP.

The Authority currently uses Dynameq as their DTA platform. It is complemented by tools developed for
this project to facilitate the developmenhefihputs and the processing of the outputs. The model run
process for a specific scenario is:
1 Import the network and demand data to prepare it for Dynameq.
a Read the Cube network and convert the links to Dynameq format

San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

b Read the transit lines from Cube format and convert to Dynameq format
¢ Read the signal timing cards from an Excel file format used by the San Francisco Municipal
Transportation Agency (SFMTA) and attach them to the network using street names

d Importtheunggnal i zed i ntersections from SFMTAGSs
e Create the demand by extracting a subarea trip table fHASH

2 Runthe DTA model in Dynameq
a Create a new scenario
b Import the files created by step 1
c Setthe necessary properties for the DTA run
d Execute

3 Export the results and process output for analysis
a Export the results from Dynameq
b Join traffic counts
¢ Produce automated reports

The details of these steps are described in Chapter 2.

San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

2. Model Input Development & Code Base

This chapter describesthegrar at i on of i nputs for the DTA model
set of opersource tools we developed for the purposes of this project. The objectives of this chapter are to
document the network and code base development, providewastegppemplate for someone else who is
considering building a DTA model, and describe the functionality of the DTA Anyway library.

2.1 Overview of DTA Anyway Code

DTA Anyway is a Python library developed by the San Francisco DTA model development team to assist
automatically generating the DTA model network from the various input components. Key functionality
includes the ability to: read and write Dynah%£gj! files, read static network files (in the form of a Cube
network), write shapefiles of links and/emaents (essential for debugging), and other network manipulation
tasks (i.e., splitting links, finding links and movements according to various attributes, setting movement
priority hierarchies for an intersection, etc.).

The objective of DTA Anywayfir DTA network modifications to be made programmatically rather than

via a graphical user interface (GUI) and to facilitate a quick, seamless aneplese grrocess for

converting a static highway network to a dynamic one. When the DTA mdgahisdtdted with the

Travel Demand Model, then there will be no need for a static network (and if there is one, DTA Anyway
could be used to generate it easily from the DTA model because the DTA network has more detail). Until
that time, however, conviers from static networks to DTA networks will be a frequent occurrence, since a
typical project involves multiple scenarios with different variations of a network, and each one needs to be
converted to a DTA network. Thus, automating the conversiorsefrtbigvorks to the DTA version

reduces error and streamlines the use of the DTA model.

San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

(" . N - N
Scenario-Related Classes Transit-Related Classes
Scenario VehicleType - TPPlus
UERZLEE R TransitRoute
l|l { {
Dynameq VehicleClass Transit TPPlus
Scenario Group Segment TransitNode
_ J U J
1 Network 1 u Node
Dynameq Cube) .
Network Network RoadNode VirtualNode Centroid
u Link
e ™
Signal-Related i) i
Classes RoadLink VirtualLink
Plan
CollectionInfo Lll
Connector Movement
TimePlan
Phase
Legend
Phase Class contains Dynameq Dynameg- Cube-
read/write functions o e
Movement (to be extended for other specific specific
DTA software) class class
\ y,

Figure 3. Class diagram of the DTA Anyway library

The DTA Anyway library has an objegéented design, with classes representing the nessthykinks,

nodes, movements, traffic signal time plans, etc. A class diagram of the DTA Anyway library is shown in
Figure3, and the API is documented thorougimthe project websiteThe DTA Anyway library is meant

to be locationand modelingoftware agnostic, so that other parties interested in devetoping
programmatically building a DTA network (from a static network or from other sources) can use the library.
Locationspecific code and configuration is kept out of the DTA Anyway library, and included only in the
scripts which use the DTA Anyway library

The DTA Anyway team has developed a series of scripts to construct the San Francisco DTA model that
uses the DTA Anyway library, with each script adding another level of detail to the DTA model. An
overview of the script sequence is showsgimres .

* http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/index.html

San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/index.html

createSFNetworkFromCubeNetwork.py

DTA Scenario Definition

(Vehicle classes,

Generalized cost egn, etc)
o —

Static Network
(Cube network) ——

e DTA Network
r (Dynameq ascii files)
‘;‘ Road shapes
ah (GIS)

(Excel)

2
P
) Transit Lines hel
gl (Cube txt) o
J | : .
. ! ~)
importexcelsignals.py - :
]
[e
’ =1 I Signal Data

Stop Signs
(Gls) —

Demand DTA Demand
(Dynameq ascil files)
attachCountsFromCountOracula.py,
DTA Validation
Count Counts
Dracula (Dynameq aschi files)

Figure 4. Overview of the script sequence used to create the San Francisco DTA network

The next two sections give an overvieinstallation and logging of the DTA Anyway library and are

followed by descriptions of each of the San Francisco specific scripts used to create the San Francisco DTA
model.

2.1 Software Requirements and Installation Instructions

The DTA Anyway Python rdale is not yet available as an installable module, and so installation involves
downloading the source code from the online Git repository (currently hosted on the Google Code website)

10
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

into a local directory. This can be done via a Git clone commastduaged on the sife As the software
becomes more mature, it will be packaged into a releasable module (a pip module or an easy_install module).
Initially, however, we anticipate that o#gencies may need to make changes to the library itself, and more
collaboration is anticipated before an installable version will be released.

In addition to downloading the source code, several additional Python modules are required or optional;
these ee listed in theocumentatiod. At this time, there are three required modules: NumPy, PyShp, and
PyParsing. There are several other modules that are requirdiffofigpctions within the DTA Anyway
codebase. All of these modules are available for installati@asigimgstaltor pip!s. Once a local version

of the DTA Anyway codebase saved, writing scripts to utilize the DTA Anyway APl amounts to making sure
the | ocation of t hPATHONRAEEDViranment variable isosthatgpgthom kmows n e 6 s
from where to load the lilbgaon import.

2.2 Logging and Error Handling

Throughout the subsequent sections, there are various references to logging warnings, errors and having fatal
errors. DTA Anyway includes a logging meteidpLogging () which should be called at the beginning
of any script. This logging method takes three arguments:
1 The first is thénfoLogFilename , into which informational log messages get written. These are
typically summary messages that quantify specific large tasks performed in the scriptsaRecords of
file being read or a file being written are included here. These logs also receive error messages as
well, when something slightly problematic occurred. These files are meant to be brief enough that a
quick scan can reveal how the script performéditighally, the San Francisco scripts typically
include a date/timestamp so that the | og files
2 The second is thdebuglLogFilename , into which a more verbose log gets written. These are
typically used to log detailed debugghiogmation.
3 The final argument is a booldag,ToConsole , indicating whether or not logging messages
should also go to the console. If setto True, INFO level messages and above are logged to the
console (so debugging messages are not included.)
Additionally, many methods in the DTA Anyway library give exceptions in response to unexpected events.
These methods are documented as such, and the calling code should handle them appropriately. San
Franciscods DTA scripts fsarkdaaght and lnggeddat comseleradi on t h a
acceptable, while other errors are sufficient cause for the script to fail outright, requiring human intervention
and a fix.

2.3 Defining the DTA Scenario and Converting the Static Network
Script name | createSFNetworkF romCubeNetwork.py
input network file (a static Cube network)
turn penalty text file (referencing input network nodes)

a shapefile from which to infer the road link shapes (referencing the input
network nodes)

Inputs

°http://code.google.com/p/dta/source/checkout
" http://dta.googlecode.com/git-history/dev/doc/_build/html/index.html
* http://packages.python.org/distribute/easy_install.html

" http://pypi.python.org/pypi/pip

11
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

http://code.google.com/p/dta/source/checkout
http://dta.googlecode.com/git-history/dev/doc/_build/html/index.html
http://packages.python.org/distribute/easy_install.html
http://pypi.python.org/pypi/pip

vehicle class names and groups

vehicle types (including vehicle names, effective lengths, response times,
maximum speeds, and speed ratios)

generalized cost equations

additional network clarification such as turn pockets, lane shifts, custom
response times, and a few links where the transit lanes are not the right-most
lane.

Configuration within
Script

Outputs | the DTA network, in Dynameq ASCI! file format

The first stage in the process is to converhput network to the DTA network. This includes several
steps:

1 The DTA Scenario is defined The scenario definition includes the vehicle classes, vehicle types
and vehicle class groups that will travel on the network, traffic flow parameters fdrith®se ve
types, and the generalized cost functions that determine vehicle route choice.

2 Subsequentlthe static network is reacand mappings are defined to translate the static network
facilities to the DTA network facilities, including the definition dfadd traffic flow attributes
based on the link attributes. For example, the vehicle response time factors as well as the free flow
speeds for roadway links are determined by the facility type of the link as well as the area type of the
neighborhood, wbh is a measure of land use density anthotorized activity. Additionally,
based on data collected by the Authority, the slope of the roadway also factors into the response time
factor of the link. See Section 3.2 for a more detailed descrigtiotraffic flow parameters data
collection.

3 Transit-only lanesare coded into the DTA network based on one of the input network link
variableBUSLANE_PM\ few of these are specifically configured (in the script itself) to be in the
second rightmost laméhen the rightmost lane is a general purposéduighaine, but most of these
are in the rightmost lane or in the center lane, depending on the BalSeANE_PM

4 Next, since the input static network does not include an explicit definition ailtimeensection
movements are added Because this step can be affected by the definition of sotrigrisibe, the
transitonly lanes are defined in a previous step; for example, a movement from ema\trimisit
to another only needs to have a ttammdy movement. This method includes an argument for
whether bturn movements are to be added; for simplicityrii$ in San Francisco are assumed to
be prohibited unless they are specifically added as allowed.

5 Turn prohibitions are applied Once thanovements are added, the static network turn
prohibition file is read and those movements are modifiegbtohibited.

6 Custom response time factors are appliedsome sections of roadway operate in real life with
more or lessaggressive traffic flow cheteristics. This most often occurs at places of large, merge
diverge, and weaving sections where drivers must maneuver quickly and aggressively to reach their
desired lanes. To accommodate these variations, the script applies a custom respeinséaime f
one specific link which required response time adjustment. In the future, this could be
operationalized by specifying a separate facility time for these sections.

7 HOV Stubs are removedPlaceholder links in the static network are used to thatveeen
managed or controlledtcess capacity and general flow lanes. When these HOV stub links are not
used in any given scenario (usually because th
exist in that particular modeled year), the stijg 8om the DTA network in order to-geitter it
and free up links and node numbers.

12
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

8 In Dynameqg and other DTA software packages, centroids are nodes that represent vehicle origins
and destinations, and connectors are the first and last real roadaayselicle trip. Since these
connectors donot typically start or end at the
centroids and connectors; they are called virtual because they do not represent actual roadways. In
order to be consistenitivthis network representatimirtual links are inserted between
centroids and road nodes, and the centroid connectors are moved to Adidck locations In
the San Francisco static network, centroid connectors typically interface with the roadkay netwo
intersections. Since the DTA model has a nuanced representation of turn movements, conflicts and
signals or stop signs at these intersections, the unrealistic intrusion of centroid connectors at these
nodes would interfere with the function of thlersection. Thus, road links adjacent to these
intersections are split to create midblock nodes, and the connectors are moved to join the roadway
network at the new nodes.

9 Turns are allowed from transionly lanes In San Francisco, private automohbiledegally
allowed to turn right from a traneitly lane when that transit lane is the-righgt lane. Similarly,
left turns for private autos are allowed from a center transit lane (favaytstoeet) or a lefide
transitonly lane (for a onmay street), where left turns are allowed. In this step, these movements
are accommodated in the DTA network by splitting the link into two portions: the portion closest to
the downstream intersection where turn movements are made and the upstreaarthertioon
the intersection. The upstream portion of the link remains a true transit only lane that does not allow
any auto or truck infringement. Meanwhile, the downstream segment is coded as a mixed traffic
right turn lane. This enhances model realysatiowing right turning vehicles to use transit lanes to
prepare for turning movements, but has the weakness of allowing autos to enter the bus lane even if
they are not making a turn. These thrgughing vehicles are still required to merge back into
mixed flow lane prior to the next segment of true tramigitane.

10 A few knownrturn pockets are addedy reading in an override file

11 Overlapping links are fixed Centroid connectors that overlap a road link too closely cause
Dynameq to error, sortdal nodes for overlapping links are moved slightly so that they no longer
conflict.

12 Short links are adjusted Due to a very intense urban environment, some links in our network are
very short. However, Dynameq requires all road links to be longkee tloagest vehicle type.

Thus, each road link is examined and for those that are too short, their lengths are asserted to be this
minimum length, which is 0.029 miles, or 153-felet length of an articulated Muni bus.

13 Unused nodes are deletedThe final step in this process is to delete unused nodes. The San
Francisco static network includes a number of nodes that are not used in DTA, such as those
involved in bicycler pedestriaonly links, transit access links, etc. These nodes are wedonnec
to the road network and are therefore easily removable.

Further documentation and source code for this step are available on the pfg)ect site

2.4 Importing Transit Routes
Script name | importTPPlusTransitRoutes.py

Inputs " the DTA network, in Dynameq ASCI! file format

" http://dta.googlecode.com/git-history/release-
1.0/doc/_build/html/script_createSFNetworkFromCubeNetwork.html

13
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_createSFNetworkFromCubeNetwork.html
http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_createSFNetworkFromCubeNetwork.html

the transit line files, in TP+ TRNBUILD format

a mapping from the transit line mode number to the DTA transit line type (bus
Configuration within or tram)
Script " amapping from the transit line mode number to the DTA transit vehicle type
" index into the TP+ TRNBUILD headway array to use

Outputs | the transit line file, in Dynameq ASCII file format

After the static network is converted to a DTA ne
configuration is imported. First, the Cube TP+ transit network file is read and parsed into a set of
TPPIlusTransitRoute instances. These instances inclddié@nal information from the

TPPIlusTransitRoute , including a mode number and an array of headways. Then the

TPPIlusTransitRoute instances are converted into DTransitLine instances. This process is

done as follows:

1 Create a DTATransitLine for each transit route specified. For each
TPPIlusTransitRoute instance, a neWansitLine instance is created. A mapping from the
Cube TP+ transit line mode number to the DTA transit type (bus or tram), and a similar mapping to
the vehicle type (regular bus, adtedl bus, cable camca light rail, efcis used to define the
attributes of th@ransitLine instance. This mapping is provided as configuration within the
script itself. The script additionally specifies which headway to use by specifyingiantiredex i
array of headways in fhiePlusTransitRoute. In order to prevent the situation where all
buses depart at the same time (the start time of the simulation), headways are translated into
schedules by choosing a random start time within the héadeaoh line.

2 Traverse the transit route and creatéransitSegments for the TransitLine . For each
node pair along thEPPlusTransitRoute , the corresponding link is searched for within the DTA
network and added to the DTiAansitLine as a link in th&ran sitSegment , which is
essentially a list of links. However, many of these links will have been split in the preceding step
(Converting the Static Network). Therefore, when a node pair is not found in the network, a
shortest path is sought between the twiatlaat series of links is used. This shortest path is then
added to thd@ransitSegment . If the shortest path includes more than a configurable number of
links (4 in our case), then it is assumed that the issue is more significant than a coygits,of link s
such as the situation where a light rail vehicle transitions tosegeadted section of atieet
links. In this situation, the shortest path is not added, and the TransitSegment is
deemed complete. The iteration over the nodeamp#iesTPPlusTransitRoute continues.

3 When a light rail line goes off the roadway network (i.e. underground or on gradeparated
tracks), skip that section. Most nodes that are specified in the TP+ TRNBUILD file are roadway
nodes and therefore in the Dhatwork. However, light rail lines have some sections that are on
gradeseparated righaf-way or underground. In these situations, the nodes will not be found, and
these sections will be skipped because they do not affect traffic. To skip thesé¢rsectiorent
TransitSegment will be completed and a néransitSegment will be initiated when the
transit line nodes are found within the roadway network again.

At the end of the process, the entire transit network (compribethsitLine instances, #mselves
comprised oTransitSegment instances) are visualized in Dynameq, to ensure that only the expected
transit lines (e.qg. light rail lines withstféet portions) are broken into disconnected segments.

14
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

Further documentation and source code fosthjsare available on the projectssite

2.4.1. Importing Transit Routes from GTFS

Since San Francisco public transit service is published in GTFS formab-BTA&ansit conversion

was also scripted during the research and development of d@addransit assignment model, FAST

TrIPsi6. This alternative transit specification has the benefit of additional accuracy by virtue of it being
scheduldased rather than frequetagsed. However, the GTFS specification does not include node

numbers congisnt with the static network, and so transit stops must be mapped to roadway links via their
published coordinates. The process is therefore more computatitamsiiye than the TP+ conversion,

and it requires more manual route validation and tweakiogpunt for discrepancies between GTFS
coordinates and those in the roadway network. This script utilizes the googletransitfeed open source library
for GTFS parsifg Further documentation and source code for GdHEF'A is availablen the websité

2.5 Importing Signals

Script Name | importExcelSignals.py

the DTA network, in Dynameq ASClII file format
signal card data, in Excel workbook format

Inputs
P movement overrides (a comma-separated text file)
U-turn prohibitions (a comma-separated text file)
Configuration within " this script is highly customized to the San Francisco application and the
Script SFMTA’s specific signal data format
Outputs the DTA network, in Dynameq ASCII file format, including signal phasing for

signalized nodes

The signal plan importing process reads in and processes all the signal plans (in the base 2012 scenario, there
are 1,102 in San Francisco) in SFMTAOGs signal spr
corresponding network node. The coderaptishes the translation with the following steps:

1 reads in and parses the signal spreadsheet (A&igrhlecard)

2 finds the correct node in the DTA network,

3 assigns the offsets, signal phases and durations to the appropriate movements, and

4 validateshe signal plans.
The signal plan validation step confirms:

0 all possible movements through that intersection have some green time (or at least permitted right

turn on red time),and
0 conflicting movements do not have simultaneous green time.

Signal Cards

¥ http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importTPPlusTransitRoutes.html

¥ Khani, A. E. Sall, L. Zorn and M. Hickman. "Integration of the FAST-TrIPs Person-Based Dynamic Transit Assignment
Model, the SF-CHAMP Regional, Activity-Based Travel Demand Model, and San Francisco’s Citywide Dynamic Traffic
Assignment Model" To be presented at the 92nd TRB Annual Meeting in January 2013.

Y http://code.google.com/p/googletransitdatafeed/

' http://code.google.com/p/dta/source/browse/scripts/importGTFS.py?name=release-1.0

15
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importTPPlusTransitRoutes.html
http://code.google.com/p/googletransitdatafeed/
http://code.google.com/p/dta/source/browse/scripts/importGTFS.py?name=release-1.0

The SFMTA maintains an Excel format signal timing card for every signalized intersection in San Francisco.
Each signal card provides complete cycle, phase, and coordination offset information for a single intersection.
If timing plans change througholo day the signal card shows all timing plans and the period during which
they are in effect. The vast majority of San Fr a
actuated signalization is employed at some intersections. Sigalaztdddd signals explain the rules

under which the actuation operates, but also provide a default fixed timing plan. The signal cards are quasi
standardized. While many of the signal cards, especially more recent timing plans, follow a standardized
structure, there are numerous examples of formatting or content arrangement differences among older timing
plans. This inconsistency presented challenges for parsing the signal cards in a systematic manner.

Signal cards are version controlled with ordinagelnumbers. Whenever an SFMTA engineer updates the
signalization for an intersection, the engineer will issue a revised signal card with a new change number, the
name of the traffic engineer, and the date of the change. The signal card for énintérsdat highest

change number is the most recent (and currently effective) signal timing plan.

Identify Node in Network

The DTA Anyway code identifies which node the signal plan should be assigned to byhmatching

movements in the signal plan (whkidhnamed according to street names) to the names of the incoming

streets in the DTA Network with the same number of street names as are in the signal card. The street name
matching is done approximately, but the code also standardizes street natetirggbgatiing zeros from

numbered streets (i.e. 07th becomes 7th) and removing roadway type from the name (Ave, St, etc.). This
ensures that the names can be matched even where the signal card and the network may not have the same
street name formatn the case of streets with the same namemesissing (i.e. 3rd Ave and 3rd St both

become 3rd) the differentiation is done based on thestnexsts. This only works if an Avenue and Street

do not have the same cres®ets, but that has not begwablem with this San Francisco network.

Signal Phase ldentification and Processing

Once the node corresponding to the signal plan is identified, the signal phases are read in and processed.
Each signal card contains the phasing for every possible day of week / time of day combination, so the signal
import script specifies which timedafy should be read in. The process identifies the green, yellow, and red
time for each signal phase and all of the movements associated with that phase.

Phases are listed in the signal cards by their streethames (i.e Folsom) and optionallyafdiceetdrby

(i.e. SBLT, which means Southbound Left Turn) identifying a specific movement. Phases without a specified
direction are assumed to include all movements associated with this incoming link. The signal import script
matches the streetnameshef phase with the movements with an incoming streetname of the selected node.

If there is a movement listed with any phase that does not have a corresponding link in the DTA network,

the program will give an error that the movement listed is not drlew@ileement in the DTA network,

and that signal will not be added to the network. Outgoing links of the movement are identified by either set
angles specified in thetTurnType function inMovement.py, or by an override file which was necessary

due to sveral intersections with odd geometries.

The override file is a comys@parated file which has fields for Incoming Direction (NB, SB, EB,WB),
Incoming Street Name, Cross Street Name, Outgoing Direction, Outgoing Street Name, turn type, vehicle
permissias (if any), and number of lanes (if not default). This file is read in and will override the automatic

16
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

turn type, permissions, and number of lanes if they differ from the default. If the angle of two outgoing links
indicates the same type of movembasy; are both assigned to that movement type. There are two possible
labels for each turning movement (i.e. LT and LT2 for left turns and RT and RT2 for right turns). Both sets
of movements are treated the same, and no preference is given to thedinstlarysmovement with any

label. Set angles are currently set to betdiand 45 degrees for through movements, between 45 and 135
degrees for right turns, between 135 and 180 degrees for secondary right turns (RT2),3beaimcktn

degrees fdeft turns, or betweed35 and180 degrees for secondary left turns (LT2).

Once the signal phases in the signal card are associated with movements in the DTA network, the signal
import script identifies the duration of each phase. Phase lengthy inayechon the time of day, so the

signal import script selects the phasing plan that encompasses the time specified. The code does not use the
scenario start time because it must allow for the fact that although our scenario begins at 14:30 to allow for
warmup time, we are interested in using the signal plans from the PM peak period. By specifying a signal
time of 15:30 or 16:30, the code will be sure to select phase times that are associated with the PM peak
signals. The current version of the DTAvkany API can only assign one time plan per signal, but this could

be adapted in the future to allow multiple timing plans to be used based on time of day.

The final stage in the signal importing code is the signal plan validation, which flags conflicting movements
with green time at the same time or signals that
the DTA network. Conflicting mements are detected based on the turn type and whether the movements

are both protected. For two perpendicular streets, conflicting movements are: both through, one through

and the other left turn, and both left turns. For two parallel streets, ngnficméiements are: one through
movement and the other left turn, and both left turns. If a two conflicting protected movements are

identified, the code gives an error and does not add the signal plan to that node. Additionally, if there are any
node movemnts which do not have any permitted or protected movement time, the code will give an error
and not assign the signal plan to that node. These are validation steps that are also done in Dynameq, so the
code simply ensures that none of the signal pided @dthe network will generate an error in Dynameq

that will prevent the simulation from running.

Several features in the DTA Anyway signal i mport
interpretation. Specifically, if there are two movementignal phase in Dynameq and only one of them

goes to yellow and then becomes red in the next phase, the yellow time can be added to the first signal phase.
Dynameq recognizes that any movement that also has green time in the following phesmaiiil greten

during the yellow time in the first phase. This is an important assumption which allows us to create signal
phasing plans that include that yellow time only for the movements where they exist, keeping accurate signal
coordination along faitiés.

The primary shortcoming of this method is that it generates a fixed signal plan for the entire simulation
period. With longer simulation times, different signal plans may be used throughout the simulation period for
some locations. At the timetbis writing, however, only one signal plan can be generated for the whole
simulation period. This is a modification that may be made as part of future extensions and updates to the
code.

17
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

Further documentation and source code for this step are awailfigigroject site

2.6 Importing Stop Signs

Script Name | importUnsignalizedintersections.py

>

the DTA network, in Dynameq ASClII file format

Inputs)
P stop sign shapefile (each row represents a stop sign)
" mapping from stop sign street names to DTA network street names (most are
Configuration within the same but some are different; “Ninth Street” vs “9th Street”, etc.)
Script " afew corrections for anomalies found in the shapefile
" critical gap parameters for custom priorities
Outputs the DTA network, in Dynameq ASCII file format, including stop sign

information and custom priorities related to stop signs

Stop sign intersection control is added after the signalized intersection control is added. If an intersection in
the DTA networlalready has a signal associated with it, the stop sign import script will ignore it. This is
because it is more likely for a stop sign to be upgraded to a signal rather than a signal to be downgraded to a
stop sign.

SFMTA has provided a stop sign shigpefiich is read in this step. Each feature in the shapefile is an
individual stop sign and includes the street the stop sign is facing, the cross street for the stop sign, and the
direction that the stop sign faces. The unsignalized intersectiosénptonses the following algorithm to
translate the shapefile into unsignalized control for the DTA network:
1 Assign each stop sign to an intersection in the DTA network using both the coordinates as well as
the street names in the stop sign shapefile.
2 Determine the type of unsignalized control by comparing the number of stop signs at each
intersection with the number of incoming road links.
In Dynameq, standard tweay stops give the higher facility type the right of way. However, there are several
cases in the San Francisco network that there are two way stop controls that have equal facility types or where
the higher facility type is required to stop. I n
priorityo, whi eihowaDyreemef8Gllfild. &@he custant pridrity givieshall the incoming
movements without stop signs priority over the incoming movements that have stop signs even if they have
the same facility type.

In the base 2012 network, around 1,800 interseatoaibray stops, 900 intersections areviag stops,
and 1,000 intersections have custom priorities defihdte end of this script, one last validation step is
performed: for each road node without any signals nor stop control, an entry is thedegnoting the
street names for intersections with no traffic control. This log should be reviewed prior to using the
Dynameq network

Further documentation and source code for this step are available on the pfoject site

¥ http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importExcelSignals.html
®http://dta.googlecode.com/git-history/release-1.0/doc/_build/html|/script_importUnsignalizedintersections.html

18
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importExcelSignals.html
http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importUnsignalizedIntersections.html

2.7 Importing Demand
Script Name | importCubeDemand.py

a set of demand files (comma-delimited ASCII files), and for each one:
a start time and end time to be used from that file
the time step to be used for that portion of time
the proportion of the input demand to be used for the DTA demand
Inputs " the DTA network, in Dynameq ASCII file format
’ the vehicle class name (this should be one of the set specified in the DTA
Scenario)
a start and end time for the demand
an optional peaking profile (a comma-delimited ASClII file)

Configuration within

Script None

Outputs 1 an 0-D matrix, in Dynameq ASCII format

The final step that is completed as part of a standard scenario import using DTA Anyway is the import and
validation of demand to the DTA model. This task is accomplighdendollowing steps:
1 Run subarea extraction for San Francisco Static modeCube TP+ scripts extract subarea
demand for the study area boundary for each applicable time period and write it out to a comma
separated files that contain six columns:igin d/AZ, a destination TAZ, and then one column
indicating the demand for each DTA vehicle cassoToll , Car_Toll , Truck_NoToll and
Truck _Toll). This occurs in Cube befdamportCubeDemand.py is run.
2 For each vehicle clagsportCubeDemand.py is run. This script:
a Reads in the comnsaparated demand files for all time periods for this vehicle class
b Applies the optional peaking profile to the demand (if specified). If a row in the peaking
profile input file matches the start and end time of one of the input demand files, then the
demand will be distributed according to the factors. The sum ctane faust add to one
for the specified time period. When this is included, then the timeStep specified with the
input demand file will be ignored, and the timeStep for this demand period will instead be
the time period for the demand period divided dyntimber of time factors.
c Writes the relevant-O demand matrices in DynamfgClI format
d
Currently, three time periods are used from tHe+-8¥P model: midday (9:00 AM to 3:30 PM), PM peak
(3:30 PM to 6:30 PM), and evening (6:30 PM to 3:00 AM). @®lagtthour of the midday demand is used,
and it serves as a wanmperiod so that the network is realistically congested when the PM peak trips begin,
resulting in more realistic travel times for those trips. Similarly, only the first hour of theevediis
used for network cool down, so that the trips starting at the very end of the PM peak are faced with more
realistic levels of network congestion.

The peaking profile used in the San Francisco demand import process is deriestSimarfii¢ount
data at network entry locations; the contents of this file follows. The peaking profile is therefore only applied
to the PM peak period data from the Cube demand input file. This peaking profile is used for all San
Francisco vehicle classes.

Start Time End Time Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

19
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

[15330 | 1830 | o015 | o016 | o016 | o018 | o018 | o017

Further documentation and source code for this step are available on the gtoject site

2.8 Importing Counts
Script Name | attachCountsFromCountDracula.py
Inputs " the DTA network, in Dyname&SCli file format

Filter definitions for the types of counts to query:
all counts
all midweek counts (Tuesdays, Wednesdays, Thursdays)
recent (2009-2011) counts
recent midweek counts

For each of these filters, we query for 5 different count types:

’ 5-minute movement counts (from 4p-6p)

15-minute movement counts (from 4p-6:30p)
15-minute mainline counts (from 4p-6:30p)
60-minute mainline counts (from 4p-6p)
3-hour mainline counts (from 3:30-6:30p)

Configuration within
Script

For each filter, for each count type, a count data file in Dynameq’s User-
defined Attribute Values File Format that corresponds either a link or a
movement with a sequence of average counts for that movement (according
to the count type)

An Excel workbook containing the given counts in their raw form and
aggregrate (via averaging) across count days

Outputs

The final set of data processed using DTA Anway are the traffic counts used for deriving the demand peaking
profile mentioned previously as well as for the DTA model validation. To facilitate this process, the

Authority has also embarked on the creation of a counts database system, called CéunBDittosiag

Geodjango, Count Dracula stores movementama mainline counts along with their locations,

collection dates and times, source files, and other attributes, and the Django framework enables easy querying
and visualization of the counts using a web interface.

The code to attach these counts to the DTA network utilizes both the DTA Anyway and Count Dracula
l i braries, matching up Count Draculads intersect.i
Count Dracul ads under sinigdtidan DT Aropivay, with docatioestbasedrok i s m
street names and cardinal directions. Thus, the proasacting a mainline count location to the
DTA network is as follows:
1 Given the street name on which the count was takem(tsieeet_label) and the direction of

that link (NB, SB, EB or WB), in addition to the names of the cross streets at both ends of the link

(thefrom_street_label and theo_street_label),

Network.findLinksForRoadLabels() iterates through its road nodes to find candidate

endpoints for the link based on the names of the streets that have an endpoint at the node.

' http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importCubeDemand.html
*? https://github.com/sfcta/CountDracula

20
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importCubeDemand.html
https://github.com/sfcta/CountDracula

2 If a set of potential start nodes and a set of potential end nodes are found, try to walk from each
potential start node to a potential end node as long as theslitikbn matches the direction from
Count Dracula and the DTA link name matches the Count Dracula link name. This is done because
the original link may have been split, so this method will return a sequence of links from the start
node to the end node.
3 The first such sequence that is found is returned. If no list is found, then no match is made.
4 attachCountsFromCountDracula.py attaches the count to the first link in the returned list of
links.
The primary shortcoming of this process is that Count Biz@sila more limited understanding of link
directionality than DTA Anyway. That is, Count Dracula does not read a shapefile nor does it have a more
nuanced grasp of geometry of a link, so links with significant curvature will have a single dirantion in Co
Dracula, but they might translate to (after splitting) links with different directions in DTA Anyway, and
therefore fail to map. Around-20% of links from Count Dracula fail to map to the DTA Anyway
network.

Similarly, the process fitaching a novement count location to the DTA Anyway networks as
follows:

1 Given the street names/directions involved in the movemeirtqoinging_street_label :
incoming_direction , ougoing_street_label , outgoing_direction , and
intersection_street_label) as well ahe intersection road node number itself (which can
be used here since Count Dracula is based on the same static network as the DTA network, so the
node numbers are sharétgtwork.findMovementForRoadLabels() looks up the given road
node.

2 Street namebasedmatching: Next, the method verifies threoming_street_label matches
an incoming link going in tieoming_direction , and that theutgoing_street_label
matches an outgoing link going indh#going_direction . However, the
incoming_direction does nohave to be the primary direction; for example, if
incoming_direction is southbound but the DTA network has the candidate link going
southeast (primarily east), then this the incoming link is considered valid. This is to account for DTA
Anyway 0 s ed@mdeherafareamismatched) notion of link geometry.

3 If Street nambased matching fails, trairection-based matchingis attempted. This is similar
but instead of requiring that the street names match, the directions are required to match and a
uniquematch is required. That is, if an incoming southbound link is sought and only one incoming
southbound link matches the road node, it is assumed to be a match (note this southbound DTA link
must have its primary direction be southbound). This is deusd&onunt Dracula has an
imperfect understanding of street names at intersections where the street names change, often
attributing links on both sides of the street to the same name.

The Count Dracula database includes a mindafilge, 18minute, 6@minute and $our counts acquired

from multiple sources such as project study counts, SFMTA, and the Caltrans Performance Measurement
System (PeMS). Since the DTA model validation is for 2010, counts from 2009 to 2011 were used for
validation, and these wdurther filtered to midweek days (Tuesday, Wednesday and Thicicpaia?).

21
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

maps the locations of the count locations available for validation.

Figure 5. Recent, midweek counts used for DTA validation

Further documentation and source code for this step are available on the pBoject site

3. Final Model Parameters

As part of the calibration process, numerous parameters were adjusted in order to copatecaged|
gridlockfree, dynamic assignment where traffic volumes and travel times fit as closely as possible to observed
values. The adjusted parametehsdaspeefiow parameters such as link speeds, vehicle lengths, vehicle

23 http://dta.googlecode.com/ghistory/releasd.0/doc/ build/html/script_attachCountsFromCountDracula.html

22
San Francisco Dynamic Traffic Assignment Project -- Final Methodology Report

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_attachCountsFromCountDracula.html

