

Prepared by:

Parsons Brinckerhoff

&

San Francisco County Transportation Authority

November 28, 2012

In 2010, the San Francisco County Transportation Authority (The Authority) received a grant from the

Federal Highway Administration (FHWA) to implement a dynamic traffic assignment (DTA) model for San

Francisco. This project, also known as òDTA Anywayó, builds upon a previous DTA model developed for

the Northwest quadrant of the city, and seeks to develop a òproduction-leveló model for use by the Authority

in project applications in the remainder of the city.

The project also seeks to be useful to developers of DTA models in other regions in three ways. First, it

involves building a flexible toolset to facilitate the development of future DTA models. Second, it

documents the process and assumptions used to develop the model, hoping to serve as an example of best

practice. Finally, several particularly challenging questions are studied:

ǒ How does DTA perform in a dense and highly congested grid network?

ǒ How can DTA be used to study the interaction of the street network with the transit system?

ǒ What benefits might DTA provide in evaluating congestion pricing policies?

This report describes the final methodology used by the resulting San Francisco DTA (SF-DTA) model.

Several accompanying resources are available to provide a more complete picture of the project, including:

ǒ Project Website and Code Base (see Appendix A and http://dta.googlecode.com): This site was used

by the project team as a collaboration and dissemination tool. The source code for the conversion

tools is available for download, as are all relevant documents.

ǒ DTA Anyway API Documentation (http://dta.googlecode.com/git-

history/dev/doc/_build/html/index.html#): This site provides an overview of the classes and

scripts included in DTA Anyway.

ǒ Final Calibration and Validation Report: While all model parameters and settings are listed here, the

calibration process and validation results are documented separately in order to maintain parsimony.

ǒ Analysis of Applications Report: Presents the results of model applications.

ǒ Model Integration Options Report: This report presents a range of options for how SF-DTA and the

San Francisco Chained Activity Modeling Process (SF-CHAMP) can be better integrated in the

future.

ǒ Future Research Topics Report: The plan for future development and integration. Note that this

document is distinct from the Model Integration Options report in that it was completed after the

peer review so is able to incorporate that feedback. As a result, it is able to present recommendations

for future development rather than simply options.

ǒ Peer Review Panel Report: Comments from the peer review for this project held on July 25, 2012.

ǒ Response to Peer Review Comments (Appendix B): Documents changes made based on the

recommendations of the panelists.

The remainder of this report is structured as follows. Chapter 1 provides an overview of the model system

and the context. Chapter 2 describes the development of all model inputs (which involved the bulk of the

effort) and the tools used to create or convert those inputs. Chapter 3 describes the final model parameters,

as well as a brief overview of the calibration and validation process. Chapter 4 presents the results of a series

of sensitivity tests. Chapter 5 summarizes the lessons learned.

http://dta.googlecode.com/
http://dta.googlecode.com/git-history/dev/doc/_build/html/index.html
http://dta.googlecode.com/git-history/dev/doc/_build/html/index.html

San Francisco County has a population of approximately 800,000 within a region populated by approximately

7.2 million people1. Surrounded on three sides by water and on the final side by a small mountain range, San

Francisco is connected to the rest of the region via two bridges: the Golden Gate to the North and the Bay

Bridge to the East, two freeways to the south: US-101 and I-280, a Transbay Tube that carries BART heavy

transit rail, and a network of ferries.

Peak period traffic congestion has been a problem for auto and transit users alike, with average speeds

downtown averaging ten mph and eight mph respectfully2. Peak-period crowding on transit services keep

potential users waiting while buses and trains repeatedly pass them up because they are too full. Congestion

from the freeway system backs up daily onto city streets in the SoMa district, bringing cars and buses alike to

a standstill.

In order to meet local goals for green house gas reduction, economic vitality, and livability3, San Francisco is

considering effective demand reduction strategies such as cordon-based congestion pricing as well as

investment in cost-effective transit efficiency strategies such as bus rapid transit (BRT). Many of the

questions that planners have been asking in the context of these strategies have been difficult to answer

confidently within the confines of the static traffic assignment used by the Authorityõs regional activity-based

travel demand model SF-CHAMP4. Among the questions that have been asked:

ǒ What streets experience speed improvements with congestion pricing and how does transit perform

compared to autos?

ǒ Where is downtown congestion coming from and going to? Where are people on this corridor going

from and going to? How many of them have origins or destinations outside of the corridor and are

thus easily divertible?

ǒ Where does traffic divert to with the implementation of this project?

Dynamic traffic assignment (DTA) promises to be able to answer these questions with more confidence.

Specifically, DTA:

1 produces feasible traffic flows rather than over capacity demand,

2 allows queues to affect upstream and downstream links,

3 is sensitive to operational strategies such as signal timing, and

4 represents specific vehicles classes such as transit (and is therefore able to produce separate

performance metrics for them).

Item one brings up an interesting point about whether projects should consider forecast demand regardless of

hard capacity constraints, or a realistic predicted volume. Forecast demand represents demand for a facility

without explicit capacity controls. Consequently, forecasted demand can sometimes greatly exceed realistic

capacity. A slightly more restrictive option is to forecast capacity-informed demand, where a harsh penalty is

applied to all demand that uses an over-capacity facility. While it is useful to understand demand for a facility,

even under conditions of onerous travel times, this information is not useful in determining what operational

impacts would actually occur. By limiting capacity and providing a more accurate estimation of travel times,

realistic predicted volumes allow planners and traffic engineers to better understand and plan for likely

operational conditions on the road network. Neither of these representations of demand volume tells the

entire story, but together they can provide a deeper and more nuanced picture of future travel characteristics

and traffic operations than either measure alone. In short, DTA may help to provide more comprehensive

information in conjunction with existing static assignment tools.

San Franciscoõs SF-CHAMP activity-based travel demand model has been in continuous use for over a

decade. It has a very detailed street network and zone system within San Francisco. It includes every street,

alleyway, and transit stop within the city and zone sizes are often the size of a single block in the downtown

area and two to four blocks in the outskirts of the city. SF-CHAMP v4.3 Fury uses static user equilibrium

highway assignment and an iterative, capacity-informed transit assignment5. Because the static user

equilibrium macroscopic traffic assignment does not contain enough detail for many planning studies, many

planning teams also rely upon network microsimulation models such as VISSIM to model fine-grained

network operations. In order to maximize the use of our budgets, VISSIM study areas are often limited to a

very small portion of the network and tools such as Synchro are used instead. Direct volumes from SF-

CHAMP often need to be manipulated in order to make sense to VISSIM. DTA has the potential to both

bridge the gap between SF-CHAMP and VISSIM and provide a more meaningful set of inputs, but also to

replace resource intensive microsimulation for instances where the questions can be answered with DTA

alone. The goal of this project is to provide a solid starting point for any project that wants to use DTA, but

not to give a project-level validation across the entire city.

In Fall 2009, the Authority created and successfully used a subarea DTA model to examine the implications

of closing some ramps on US 101 for the purposes of construction. This Northwest Subarea DTA model

had 260 total zones, 3,000 nodes, 7,000 links, 240 traffic signals and 83 transit lines. Subsequently, this model

has been used to study the effects of the Geary BRT project. While the subarea model has proven successful,

there are several pitfalls that arose during its use that are discussed below.

¶ DTA represents an ideal world of network level of service knowledge. This can often mean that

small shifts in travel time can create drastic shifts away from main-line roadways that may or may not

be entirely true. Do drivers always know whether a slightly better alternate route exists on an

obscure local roadway? We could create some more specific generalized cost functions in our

citywide DTA calibration that attempt to mitigate the main-line diversion. However, the inertial

effect of staying on your ôinitial routeõ has yet to be captured.

¶ The subareaõs eastern boundary cut across a regular street grid, forcing the subarea extraction process

to assign demand to specific streets in the grid. This proved to be very restrictive and often resulted

in strange results near the start of the subarea, but also farther west as well. We anticipate that the

citywide DTA eliminates this pitfall by using more natural boundaries (The Pacific Ocean, San

Francisco Bay, and San Bruno Mountain Range) with a limited number of external stations.

¶ Volumes on smaller streets are very reliant on centroid-connector placements, which made LOS

analysis with the raw DTA results sometimes problematic. In the end, small ôsurgical adjustmentsõ

were still required in order to achieve more realistic results at a small scale. This issue remains in our

citywide DTA calibration. However, it is anticipated to be mitigated as a part of any project-level

calibration process, which would involve the identification of parking facilities.

The DTA Anyway project has the primary objective of building a working DTA model with results that make

sense for the PM Peak period in San Francisco. Rather than a òone-shotó model built to accomplish a

specific task, it has the supporting objective of establishing a seamless process to move from SF-CHAMP to

DTA for its use in a multitude of projects into the future. This process uses the SF-CHAMP network and

then builds a DTA network from it, allowing for changes to one network to be reflected in both models. The

San Francisco DTA also uses SF-CHAMP demand directly, resulting in a behaviorally consistent approach

and avoiding the arbitrariness that can result from synthetic matrix estimation approaches. Several principles

were adopted to guide the model development process:

ǒ First, the process is automated as much as possible in order to minimize both the schedule

requirements and the risk of error associated with human intervention. Therefore, code is written to

prepare model inputs, convert data formats, and summarize results. Any issues that cannot be

addressed in an automated fashion, such as a network coding errors, are addressed at the òsourceó

wherever possible. This means that changes are made to the SF-CHAMP network that is converted

to the DTA network, rather than made directly to the DTA network where they would be

overwritten with the next import.

ǒ Second, the model is based on real data as much as possible. If something can be readily measured,

we measured it. If something could not be measured, we sought some basis or justification for our

assumption. Only as a last resort, did we make a change òbecause it worksó, and in those cases the

change is clearly documented. This data-driven approach is most evident in the determination of

traffic flow parameters, where we conducted extensive fieldwork to measure vehicle lengths,

response times, and other aspects of driver behavior. It also extends to the input development,

where we imported current signal timing plans (over 1,000 of them), stop sign locations and transit

routes throughout the city.

ǒ Third, the model was developed in a highly collaborative manner. The Authority and Parsons

Brinckerhoff staff worked together as part of an integrated team, sharing tasks to take advantage of

the skill sets and availability of different individuals. The project website6 was an important tool to

facilitate this collaboration. The site is integrated with the Git7 version control system for the source

code, includes an issue tracker to prevent details from slipping through the cracks, and was our

repository for sharing the results of each model run and documentation on how to perform certain

tasks.

ǒ Fourth, any new code was developed in an open-source environment, but we avoided rewriting

functionality that already exists elsewhere. The preference for open-source comes from a desire to

provide a platform for external collaboration, and the lack of a desire to become a commercial

software vendor. We also recognize that is not a prudent use of resources to replicate functionality

that already exists and can be purchased for a reasonable price. The prime example of this is the

DTA package itself, in this case Dynameq8. The Authority's experience with Dynameq has been that

it produces reasonable results, has a mature user interface, and a responsive developer. Therefore the

code written for this project focuses on the converting model inputs and summarizing results. It

does not implement the assignment itself, nor does it provide a network editor or visualizer, which

are both available in Dynameq and most other DTA software.

It is worth noting that there are several topics left for future development. These include:

ǒ Rigorous validation for specific òproject-leveló applications;

ǒ An enhanced approach to modeling parking, including reconfiguring centroid connectors to load at

driveways;

ǒ Assigning people to transit trips (this is being done in parallel with FAST-Trips);

ǒ 24-hour DTA; and

ǒ Feedback to SF-CHAMP.

These topics are discussed in more detail in the Future Research Topics Report.

The model covers all of San Francisco, as shown in Figure 2. This allowed for a natural breakpoint at the San

Bruno Mountain State Park near the San Mateo County line where there are a limited number of external

stations. In this way, SF-DTA is able to predict the north-south routing through the city, rather than relying

on fixed external station volumes through a dense part of the roadway network.

The road network includes every street in the city, with 976 traffic analysis zones (TAZs) and 22 external

stations. The network includes actual phasing and timing plans for nearly every traffic signal in the city, about

1,115 in total (certain mid-block or pedestrian-only signals are ignored). It also includes stop control at about

3,726 intersections based on a GIS layer of stop signs in the city.

The demand for the San Francisco DTA is taken from a subarea extraction of the trip tables produced by SF-

CHAMP. SF-CHAMP covers the entire nine-county Bay Area, which is why the subarea extraction is

necessary. The roadway networks are also imported directly from the network representation used in SF-

CHAMP, allowing for a direct linkage between the two models. The demand is currently segmented into

four user classes: autos, trucks, autos with toll, and trucks with toll. There are currently no tolls within the

city, so the toll matrices are unused in the base year. They serve as placeholders for scenarios that have

cordon-based congestion pricing. The definition of user classes is flexible such that different classes could be

used for a specific application.

The simulation is currently run for a PM peak period. Demand is loaded from 2:30-7:30 pm, with the

simulation continuing until all traffic clears. The five-hour demand period includes a one-hour warm-up

period, a three-hour P.M. peak period, and a one-hour cool-down period. During the warm-up period from

2:30 to 3:30 pm, approximately 76,300 cars and 13,000 trucks are loaded on to the network, and during the

cool-down period from 6:30 to 7:30 pm, roughly 68,300 cars and 6,000 trucks are loaded onto the network.

During the intermediate three-hour PM peak period in the base year, roughly 390,600 autos and 65,200 trucks

are loaded onto the network, with 220,700 internal car trips and 170,000 car trips originating or ending

outside the county study area. With warm-up time, the reliable period of results is approximately 3:30-6:30

pm, corresponding to the three-hour P.M. peak assignment in SF-CHAMP.

The Authority currently uses Dynameq as their DTA platform. It is complemented by tools developed for

this project to facilitate the development of the inputs and the processing of the outputs. The model run

process for a specific scenario is:

1 Import the network and demand data to prepare it for Dynameq.

a Read the Cube network and convert the links to Dynameq format

b Read the transit lines from Cube format and convert to Dynameq format

c Read the signal timing cards from an Excel file format used by the San Francisco Municipal

Transportation Agency (SFMTA) and attach them to the network using street names

d Import the unsignalized intersections from SFMTAõs GIS format

e Create the demand by extracting a subarea trip table from SF-CHAMP

2 Run the DTA model in Dynameq

a Create a new scenario

b Import the files created by step 1

c Set the necessary properties for the DTA run

d Execute

3 Export the results and process output for analysis

a Export the results from Dynameq

b Join traffic counts

c Produce automated reports

The details of these steps are described in Chapter 2.

This chapter describes the preparation of inputs for the DTA model using the òDTA Anywayó codebase - a

set of open-source tools we developed for the purposes of this project. The objectives of this chapter are to

document the network and code base development, provide a step-by-step template for someone else who is

considering building a DTA model, and describe the functionality of the DTA Anyway library.

DTA Anyway is a Python library developed by the San Francisco DTA model development team to assist in

automatically generating the DTA model network from the various input components. Key functionality

includes the ability to: read and write Dynameq ASCII files, read static network files (in the form of a Cube

network), write shapefiles of links and movements (essential for debugging), and other network manipulation

tasks (i.e., splitting links, finding links and movements according to various attributes, setting movement

priority hierarchies for an intersection, etc.).

The objective of DTA Anyway is for DTA network modifications to be made programmatically rather than

via a graphical user interface (GUI) and to facilitate a quick, seamless and less error-prone process for

converting a static highway network to a dynamic one. When the DTA model is fully integrated with the

Travel Demand Model, then there will be no need for a static network (and if there is one, DTA Anyway

could be used to generate it easily from the DTA model because the DTA network has more detail). Until

that time, however, conversion from static networks to DTA networks will be a frequent occurrence, since a

typical project involves multiple scenarios with different variations of a network, and each one needs to be

converted to a DTA network. Thus, automating the conversion of these networks to the DTA version

reduces error and streamlines the use of the DTA model.

The DTA Anyway library has an object-oriented design, with classes representing the network itself, links,

nodes, movements, traffic signal time plans, etc. A class diagram of the DTA Anyway library is shown in

Figure 3, and the API is documented thoroughly on the project website9. The DTA Anyway library is meant

to be location- and modeling-software agnostic, so that other parties interested in developing or

programmatically building a DTA network (from a static network or from other sources) can use the library.

Location-specific code and configuration is kept out of the DTA Anyway library, and included only in the

scripts which use the DTA Anyway library.

The DTA Anyway team has developed a series of scripts to construct the San Francisco DTA model that

uses the DTA Anyway library, with each script adding another level of detail to the DTA model. An

overview of the script sequence is shown in Figure 4 .

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/index.html

The next two sections give an overview of installation and logging of the DTA Anyway library and are

followed by descriptions of each of the San Francisco specific scripts used to create the San Francisco DTA

model.

The DTA Anyway Python module is not yet available as an installable module, and so installation involves

downloading the source code from the online Git repository (currently hosted on the Google Code website)

into a local directory. This can be done via a Git clone command as instructed on the site10. As the software

becomes more mature, it will be packaged into a releasable module (a pip module or an easy_install module).

Initially, however, we anticipate that other agencies may need to make changes to the library itself, and more

collaboration is anticipated before an installable version will be released.

In addition to downloading the source code, several additional Python modules are required or optional;

these are listed in the documentation11. At this time, there are three required modules: NumPy, PyShp, and

PyParsing. There are several other modules that are required for specific functions within the DTA Anyway

codebase. All of these modules are available for installation using easy_install 12or pip13. Once a local version

of the DTA Anyway codebase saved, writing scripts to utilize the DTA Anyway API amounts to making sure

the location of the codebase is listed in oneõs PYTHONPATH environment variable so that python knows

from where to load the library on import.

Throughout the subsequent sections, there are various references to logging warnings, errors and having fatal

errors. DTA Anyway includes a logging method, setupLogging () which should be called at the beginning

of any script. This logging method takes three arguments:

1 The first is the infoLogFilename , into which informational log messages get written. These are

typically summary messages that quantify specific large tasks performed in the scripts. Records of a

file being read or a file being written are included here. These logs also receive error messages as

well, when something slightly problematic occurred. These files are meant to be brief enough that a

quick scan can reveal how the script performed. Additionally, the San Francisco scripts typically

include a date/timestamp so that the log files donõt overwrite each other.

2 The second is the debugLogFilename , into which a more verbose log gets written. These are

typically used to log detailed debugging information.

3 The final argument is a boolean, logToConsole , indicating whether or not logging messages

should also go to the console. If set to True, INFO level messages and above are logged to the

console (so debugging messages are not included.)

Additionally, many methods in the DTA Anyway library give exceptions in response to unexpected events.

These methods are documented as such, and the calling code should handle them appropriately. San

Franciscoõs DTA scripts follow the convention that most errors are caught and logged but considered

acceptable, while other errors are sufficient cause for the script to fail outright, requiring human intervention

and a fix.

createSFNetworkF romCubeNetwork.py

 ʾ
 ʾ
 ʾ

http://code.google.com/p/dta/source/checkout
http://dta.googlecode.com/git-history/dev/doc/_build/html/index.html
http://packages.python.org/distribute/easy_install.html
http://pypi.python.org/pypi/pip

 ʾ
 ʾ

 ʾ
 ʾ

The first stage in the process is to convert the input network to the DTA network. This includes several

steps:

1 The DTA Scenario is defined. The scenario definition includes the vehicle classes, vehicle types

and vehicle class groups that will travel on the network, traffic flow parameters for those vehicle

types, and the generalized cost functions that determine vehicle route choice.

2 Subsequently, the static network is read and mappings are defined to translate the static network

facilities to the DTA network facilities, including the definition of additional traffic flow attributes

based on the link attributes. For example, the vehicle response time factors as well as the free flow

speeds for roadway links are determined by the facility type of the link as well as the area type of the

neighborhood, which is a measure of land use density and non-motorized activity. Additionally,

based on data collected by the Authority, the slope of the roadway also factors into the response time

factor of the link. See Section 3.2 for a more detailed description of the traffic flow parameters data

collection.

3 Transit-only lanes are coded into the DTA network based on one of the input network link

variable, BUSLANE_PM. A few of these are specifically configured (in the script itself) to be in the

second rightmost lane when the rightmost lane is a general purpose right-turn lane, but most of these

are in the rightmost lane or in the center lane, depending on the value of BUSLANE_PM.

4 Next, since the input static network does not include an explicit definition of them, all intersection

movements are added. Because this step can be affected by the definition of a transit-only lane, the

transit-only lanes are defined in a previous step; for example, a movement from one transit-only link

to another only needs to have a transit-only movement. This method includes an argument for

whether U-turn movements are to be added; for simplicity, U-turns in San Francisco are assumed to

be prohibited unless they are specifically added as allowed.

5 Turn prohibitions are applied. Once the movements are added, the static network turn

prohibition file is read and those movements are modified to be prohibited.

6 Custom response time factors are applied. Some sections of roadway operate in real life with

more- or less-aggressive traffic flow characteristics. This most often occurs at places of large merge-,

diverge-, and weaving sections where drivers must maneuver quickly and aggressively to reach their

desired lanes. To accommodate these variations, the script applies a custom response time factor to

one specific link which required response time adjustment. In the future, this could be

operationalized by specifying a separate facility time for these sections.

7 HOV Stubs are removed. Placeholder links in the static network are used to connect between

managed or controlled-access capacity and general flow lanes. When these HOV stub links are not

used in any given scenario (usually because the HOV lane that they are connecting to doesnõt yet

exist in that particular modeled year), the script strips from the DTA network in order to de-clutter it

and free up links and node numbers.

8 In Dynameq and other DTA software packages, centroids are nodes that represent vehicle origins

and destinations, and connectors are the first and last real roadways of each vehicle trip. Since these

connectors donõt typically start or end at the centroid location, virtual links typically connect

centroids and connectors; they are called virtual because they do not represent actual roadways. In

order to be consistent with this network representation, virtual links are inserted between

centroids and road nodes, and the centroid connectors are moved to mid-block locations. In

the San Francisco static network, centroid connectors typically interface with the roadway network at

intersections. Since the DTA model has a nuanced representation of turn movements, conflicts and

signals or stop signs at these intersections, the unrealistic intrusion of centroid connectors at these

nodes would interfere with the function of the intersection. Thus, road links adjacent to these

intersections are split to create midblock nodes, and the connectors are moved to join the roadway

network at the new nodes.

9 Turns are allowed from transit-only lanes. In San Francisco, private automobiles are legally

allowed to turn right from a transit-only lane when that transit lane is the right-most lane. Similarly,

left turns for private autos are allowed from a center transit lane (for a two-way street) or a left-side

transit-only lane (for a one-way street), where left turns are allowed. In this step, these movements

are accommodated in the DTA network by splitting the link into two portions: the portion closest to

the downstream intersection where turn movements are made and the upstream portion farther from

the intersection. The upstream portion of the link remains a true transit only lane that does not allow

any auto or truck infringement. Meanwhile, the downstream segment is coded as a mixed traffic

right turn lane. This enhances model realism by allowing right turning vehicles to use transit lanes to

prepare for turning movements, but has the weakness of allowing autos to enter the bus lane even if

they are not making a turn. These through-moving vehicles are still required to merge back into a

mixed flow lane prior to the next segment of true transit-only lane.

10 A few known turn pockets are added by reading in an override file.

11 Overlapping links are fixed. Centroid connectors that overlap a road link too closely cause

Dynameq to error, so virtual nodes for overlapping links are moved slightly so that they no longer

conflict.

12 Short links are adjusted. Due to a very intense urban environment, some links in our network are

very short. However, Dynameq requires all road links to be longer than the longest vehicle type.

Thus, each road link is examined and for those that are too short, their lengths are asserted to be this

minimum length, which is 0.029 miles, or 153 feet. -- the length of an articulated Muni bus.

13 Unused nodes are deleted. The final step in this process is to delete unused nodes. The San

Francisco static network includes a number of nodes that are not used in DTA, such as those

involved in bicycle- or pedestrian-only links, transit access links, etc. These nodes are unconnected

to the road network and are therefore easily removable.

Further documentation and source code for this step are available on the project site14 ().

importTPPlusTransitRoutes.py

 ʾ

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_createSFNetworkFromCubeNetwork.html
http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_createSFNetworkFromCubeNetwork.html

 ʾ

 ʾ

 ʾ
 ʾ

After the static network is converted to a DTA network, the accompanying static networkõs transit

configuration is imported. First, the Cube TP+ transit network file is read and parsed into a set of

TPPlusTransitRoute instances. These instances include additional information from the

TPPlusTransitRoute , including a mode number and an array of headways. Then the

TPPlusTransitRoute instances are converted into DTA TransitLine instances. This process is

done as follows:

1 Create a DTA TransitLine for each transit route specified. For each

TPPlusTransitRoute instance, a new TransitLine instance is created. A mapping from the

Cube TP+ transit line mode number to the DTA transit type (bus or tram), and a similar mapping to

the vehicle type (regular bus, articulated bus, cable car, 2-car light rail, etc.) is used to define the

attributes of the TransitLine instance. This mapping is provided as configuration within the

script itself. The script additionally specifies which headway to use by specifying an index into the

array of headways in the TPPlusTransitRoute. In order to prevent the situation where all

buses depart at the same time (the start time of the simulation), headways are translated into

schedules by choosing a random start time within the headway for each line.

2 Traverse the transit route and create TransitSegments for the TransitLine . For each

node pair along the TPPlusTransitRoute , the corresponding link is searched for within the DTA

network and added to the DTA TransitLine as a link in the Tran sitSegment , which is

essentially a list of links. However, many of these links will have been split in the preceding step

(Converting the Static Network). Therefore, when a node pair is not found in the network, a

shortest path is sought between the two and that series of links is used. This shortest path is then

added to the TransitSegment . If the shortest path includes more than a configurable number of

links (4 in our case), then it is assumed that the issue is more significant than a couple of link splits,

such as the situation where a light rail vehicle transitions to a grade-separated section of off-street

links. In this situation, the shortest path is not added, and the current TransitSegment is

deemed complete. The iteration over the node pairs in the TPPlusTransitRoute continues.

3 When a light rail line goes off the roadway network (i.e. underground or on grade-separated

tracks), skip that section. Most nodes that are specified in the TP+ TRNBUILD file are roadway

nodes and therefore in the DTA network. However, light rail lines have some sections that are on

grade-separated right-of-way or underground. In these situations, the nodes will not be found, and

these sections will be skipped because they do not affect traffic. To skip these sections, the current

TransitSegment will be completed and a new TransitSegment will be initiated when the

transit line nodes are found within the roadway network again.

At the end of the process, the entire transit network (comprised of TransitLine instances, themselves

comprised of TransitSegment instances) are visualized in Dynameq, to ensure that only the expected

transit lines (e.g. light rail lines with off-street portions) are broken into disconnected segments.

Further documentation and source code for this step are available on the project site15.

2.4.1. Importing Transit Routes from GTFS

Since San Francisco public transit service is published in GTFS format, GTFS-to-DTA transit conversion

was also scripted during the research and development of a person-based transit assignment model, FAST-

TrIPs16. This alternative transit specification has the benefit of additional accuracy by virtue of it being

schedule-based rather than frequency-based. However, the GTFS specification does not include node

numbers consistent with the static network, and so transit stops must be mapped to roadway links via their

published coordinates. The process is therefore more computationally-intensive than the TP+ conversion,

and it requires more manual route validation and tweaking to account for discrepancies between GTFS

coordinates and those in the roadway network. This script utilizes the googletransitfeed open source library

for GTFS parsing17. Further documentation and source code for GTFS-to-DTA is available on the website18.

importExcelSignals.py

 ʾ
 ʾ
 ʾ
 ʾ

 ʾ

 ʾ

The signal plan importing process reads in and processes all the signal plans (in the base 2012 scenario, there

are 1,102 in San Francisco) in SFMTAõs signal spreadsheet format, and saves signal phasing data on the

corresponding network node. The code accomplishes the translation with the following steps:

1 reads in and parses the signal spreadsheet (AKA the signal card),

2 finds the correct node in the DTA network,

3 assigns the offsets, signal phases and durations to the appropriate movements, and

4 validates the signal plans.

The signal plan validation step confirms:

ǒ all possible movements through that intersection have some green time (or at least permitted right

turn on red time),and

ǒ conflicting movements do not have simultaneous green time.

Signal Cards

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importTPPlusTransitRoutes.html
http://code.google.com/p/googletransitdatafeed/
http://code.google.com/p/dta/source/browse/scripts/importGTFS.py?name=release-1.0

The SFMTA maintains an Excel format signal timing card for every signalized intersection in San Francisco.

Each signal card provides complete cycle, phase, and coordination offset information for a single intersection.

If timing plans change throughout the day the signal card shows all timing plans and the period during which

they are in effect. The vast majority of San Franciscoõs traffic signals operate on fixed timing plans, but

actuated signalization is employed at some intersections. Signal cards for actuated signals explain the rules

under which the actuation operates, but also provide a default fixed timing plan. The signal cards are quasi-

standardized. While many of the signal cards, especially more recent timing plans, follow a standardized

structure, there are numerous examples of formatting or content arrangement differences among older timing

plans. This inconsistency presented challenges for parsing the signal cards in a systematic manner.

Signal cards are version controlled with ordinal change numbers. Whenever an SFMTA engineer updates the

signalization for an intersection, the engineer will issue a revised signal card with a new change number, the

name of the traffic engineer, and the date of the change. The signal card for an intersection with the highest

change number is the most recent (and currently effective) signal timing plan.

Identify Node in Network

The DTA Anyway code identifies which node the signal plan should be assigned to by matching the

movements in the signal plan (which are named according to street names) to the names of the incoming

streets in the DTA Network with the same number of street names as are in the signal card. The street name

matching is done approximately, but the code also standardizes street naming by deleting leading zeros from

numbered streets (i.e. 07th becomes 7th) and removing roadway type from the name (Ave, St, etc.). This

ensures that the names can be matched even where the signal card and the network may not have the same

street name format. In the case of streets with the same name post-processing (i.e. 3rd Ave and 3rd St both

become 3rd) the differentiation is done based on the cross-streets. This only works if an Avenue and Street

do not have the same cross-streets, but that has not been a problem with this San Francisco network.

Signal Phase Identification and Processing

Once the node corresponding to the signal plan is identified, the signal phases are read in and processed.

Each signal card contains the phasing for every possible day of week / time of day combination, so the signal

import script specifies which time of day should be read in. The process identifies the green, yellow, and red

time for each signal phase and all of the movements associated with that phase.

Phases are listed in the signal cards by their streetnames (i.e Folsom) and optionally followed by a direction

(i.e. SBLT, which means Southbound Left Turn) identifying a specific movement. Phases without a specified

direction are assumed to include all movements associated with this incoming link. The signal import script

matches the streetnames of the phase with the movements with an incoming streetname of the selected node.

If there is a movement listed with any phase that does not have a corresponding link in the DTA network,

the program will give an error that the movement listed is not an available movement in the DTA network,

and that signal will not be added to the network. Outgoing links of the movement are identified by either set

angles specified in the getTurnType function in Movement.py, or by an override file which was necessary

due to several intersections with odd geometries.

The override file is a comma-separated file which has fields for Incoming Direction (NB, SB, EB,WB),

Incoming Street Name, Cross Street Name, Outgoing Direction, Outgoing Street Name, turn type, vehicle

permissions (if any), and number of lanes (if not default). This file is read in and will override the automatic

turn type, permissions, and number of lanes if they differ from the default. If the angle of two outgoing links

indicates the same type of movement, they are both assigned to that movement type. There are two possible

labels for each turning movement (i.e. LT and LT2 for left turns and RT and RT2 for right turns). Both sets

of movements are treated the same, and no preference is given to the first or secondary movement with any

label. Set angles are currently set to between -45 and 45 degrees for through movements, between 45 and 135

degrees for right turns, between 135 and 180 degrees for secondary right turns (RT2), between -135 and -45

degrees for left turns, or between -135 and -180 degrees for secondary left turns (LT2).

Once the signal phases in the signal card are associated with movements in the DTA network, the signal

import script identifies the duration of each phase. Phase lengths may vary based on the time of day, so the

signal import script selects the phasing plan that encompasses the time specified. The code does not use the

scenario start time because it must allow for the fact that although our scenario begins at 14:30 to allow for

warm-up time, we are interested in using the signal plans from the PM peak period. By specifying a signal

time of 15:30 or 16:30, the code will be sure to select phase times that are associated with the PM peak

signals. The current version of the DTA Anyway API can only assign one time plan per signal, but this could

be adapted in the future to allow multiple timing plans to be used based on time of day.

The final stage in the signal importing code is the signal plan validation, which flags conflicting movements

with green time at the same time or signals that canõt find all the movements in the signal card in that node in

the DTA network. Conflicting movements are detected based on the turn type and whether the movements

are both protected. For two perpendicular streets, conflicting movements are: both through, one through

and the other left turn, and both left turns. For two parallel streets, conflicting movements are: one through

movement and the other left turn, and both left turns. If a two conflicting protected movements are

identified, the code gives an error and does not add the signal plan to that node. Additionally, if there are any

node movements which do not have any permitted or protected movement time, the code will give an error

and not assign the signal plan to that node. These are validation steps that are also done in Dynameq, so the

code simply ensures that none of the signal plans added to the network will generate an error in Dynameq

that will prevent the simulation from running.

Several features in the DTA Anyway signal import script are specific to Dynameqõs signal timing

interpretation. Specifically, if there are two movements in a signal phase in Dynameq and only one of them

goes to yellow and then becomes red in the next phase, the yellow time can be added to the first signal phase.

Dynameq recognizes that any movement that also has green time in the following phase will not remain green

during the yellow time in the first phase. This is an important assumption which allows us to create signal

phasing plans that include that yellow time only for the movements where they exist, keeping accurate signal

coordination along facilities.

The primary shortcoming of this method is that it generates a fixed signal plan for the entire simulation

period. With longer simulation times, different signal plans may be used throughout the simulation period for

some locations. At the time of this writing, however, only one signal plan can be generated for the whole

simulation period. This is a modification that may be made as part of future extensions and updates to the

code.

Further documentation and source code for this step are available on the project site19.

importUnsignalizedIntersections.py

 ʾ
 ʾ

 ʾ

 ʾ
 ʾ

 ʾ

Stop sign intersection control is added after the signalized intersection control is added. If an intersection in

the DTA network already has a signal associated with it, the stop sign import script will ignore it. This is

because it is more likely for a stop sign to be upgraded to a signal rather than a signal to be downgraded to a

stop sign.

SFMTA has provided a stop sign shapefile which is read in this step. Each feature in the shapefile is an

individual stop sign and includes the street the stop sign is facing, the cross street for the stop sign, and the

direction that the stop sign faces. The unsignalized intersection import script uses the following algorithm to

translate the shapefile into unsignalized control for the DTA network:

1 Assign each stop sign to an intersection in the DTA network using both the coordinates as well as

the street names in the stop sign shapefile.

2 Determine the type of unsignalized control by comparing the number of stop signs at each

intersection with the number of incoming road links.

In Dynameq, standard two-way stops give the higher facility type the right of way. However, there are several

cases in the San Francisco network that there are two way stop controls that have equal facility types or where

the higher facility type is required to stop. In these cases, Dynameq requires the definition of a òcustom

priorityó, which are written out in their own Dynameq ASCII file. The custom priority gives all the incoming

movements without stop signs priority over the incoming movements that have stop signs even if they have

the same facility type.

In the base 2012 network, around 1,800 intersections are all-way stops, 900 intersections are two-way stops,

and 1,000 intersections have custom priorities defined. At the end of this script, one last validation step is

performed: for each road node without any signals nor stop control, an entry is made into the log noting the

street names for intersections with no traffic control. This log should be reviewed prior to using the

Dynameq network

Further documentation and source code for this step are available on the project site20.

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importExcelSignals.html
http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importUnsignalizedIntersections.html

importCubeDemand.py

 ʾ
 ̔
 ̔
 ̔

 ʾ
 ʾ

 ʾ
 ʾ

 ʾ

¶

The final step that is completed as part of a standard scenario import using DTA Anyway is the import and

validation of demand to the DTA model. This task is accomplished with the following steps:

1 Run subarea extraction for San Francisco Static model - Cube TP+ scripts extract subarea

demand for the study area boundary for each applicable time period and write it out to a comma-

separated files that contain six columns: an origin TAZ, a destination TAZ, and then one column

indicating the demand for each DTA vehicle class (Car_NoToll , Car_Toll , Truck_NoToll and

Truck_Toll). This occurs in Cube before importCubeDemand.py is run.

2 For each vehicle class, importCubeDemand.py is run. This script:

a Reads in the comma-separated demand files for all time periods for this vehicle class

b Applies the optional peaking profile to the demand (if specified). If a row in the peaking

profile input file matches the start and end time of one of the input demand files, then the

demand will be distributed according to the factors. The sum of the factors must add to one

for the specified time period. When this is included, then the timeStep specified with the

input demand file will be ignored, and the timeStep for this demand period will instead be

the time period for the demand period divided by the number of time factors.

c Writes the relevant O-D demand matrices in Dynameq ASCII format

d

Currently, three time periods are used from the SF-CHAMP model: midday (9:00 AM to 3:30 PM), PM peak

(3:30 PM to 6:30 PM), and evening (6:30 PM to 3:00 AM). Only the last hour of the midday demand is used,

and it serves as a warm-up period so that the network is realistically congested when the PM peak trips begin,

resulting in more realistic travel times for those trips. Similarly, only the first hour of the evening period is

used for network cool down, so that the trips starting at the very end of the PM peak are faced with more

realistic levels of network congestion.

The peaking profile used in the San Francisco demand import process is derived from PeMS traffic count

data at network entry locations; the contents of this file follows. The peaking profile is therefore only applied

to the PM peak period data from the Cube demand input file. This peaking profile is used for all San

Francisco vehicle classes.

Further documentation and source code for this step are available on the project site21 .

attachCountsFromCountDracula.py

 ʾ the DTA network, in Dynameq ASCII file format

 ʾ
 ʾ
 ʾ
 ʾ

 ʾ
 ʾ
 ʾ
 ʾ
 ʾ

 ʾ

 ʾ

The final set of data processed using DTA Anway are the traffic counts used for deriving the demand peaking

profile mentioned previously as well as for the DTA model validation. To facilitate this process, the

Authority has also embarked on the creation of a counts database system, called Count Dracula22. Built using

Geodjango, Count Dracula stores movement counts and mainline counts along with their locations,

collection dates and times, source files, and other attributes, and the Django framework enables easy querying

and visualization of the counts using a web interface.

The code to attach these counts to the DTA network utilizes both the DTA Anyway and Count Dracula

libraries, matching up Count Draculaõs intersections and mainline links with those of the DTA network.

Count Draculaõs understanding of the network is more limited than DTA Anyway, with locations based on

street names and cardinal directions. Thus, the process for attaching a mainline count location to the

DTA network is as follows:

1 Given the street name on which the count was taken (the on_street_label) and the direction of

that link (NB, SB, EB or WB), in addition to the names of the cross streets at both ends of the link

(the from_street_label and the to_street_label),

Network.findLinksForRoadLabels() iterates through its road nodes to find candidate

endpoints for the link based on the names of the streets that have an endpoint at the node.

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_importCubeDemand.html
https://github.com/sfcta/CountDracula

2 If a set of potential start nodes and a set of potential end nodes are found, try to walk from each

potential start node to a potential end node as long as the link direction matches the direction from

Count Dracula and the DTA link name matches the Count Dracula link name. This is done because

the original link may have been split, so this method will return a sequence of links from the start

node to the end node.

3 The first such sequence that is found is returned. If no list is found, then no match is made.

4 attachCountsFromCountDracula.py attaches the count to the first link in the returned list of

links.

The primary shortcoming of this process is that Count Dracula has a more limited understanding of link

directionality than DTA Anyway. That is, Count Dracula does not read a shapefile nor does it have a more

nuanced grasp of geometry of a link, so links with significant curvature will have a single direction in Count

Dracula, but they might translate to (after splitting) links with different directions in DTA Anyway, and

therefore fail to map. Around 10-20% of links from Count Dracula fail to map to the DTA Anyway

network.

Similarly, the process for attaching a movement count location to the DTA Anyway network is as

follows:

1 Given the street names/directions involved in the movement (the incoming_street_label ,

incoming_direction , ougoing_street_label , outgoing_direction , and

intersection_street_label) as well as the intersection road node number itself (which can

be used here since Count Dracula is based on the same static network as the DTA network, so the

node numbers are shared), Network.findMovementForRoadLabels() looks up the given road

node.

2 Street name-based matching: Next, the method verifies the incoming_street_label matches

an incoming link going in the incoming_direction , and that the outgoing_street_label

matches an outgoing link going in the outgoing_direction . However, the

incoming_direction does not have to be the primary direction; for example, if

incoming_direction is southbound but the DTA network has the candidate link going

southeast (primarily east), then this the incoming link is considered valid. This is to account for DTA

Anywayõs more nuanced (and therefore mismatched) notion of link geometry.

3 If Street name-based matching fails, then direction-based matching is attempted. This is similar

but instead of requiring that the street names match, the directions are required to match and a

unique match is required. That is, if an incoming southbound link is sought and only one incoming

southbound link matches the road node, it is assumed to be a match (note this southbound DTA link

must have its primary direction be southbound). This is done because Count Dracula has an

imperfect understanding of street names at intersections where the street names change, often

attributing links on both sides of the street to the same name.

The Count Dracula database includes a mix of 5-minute, 15-minute, 60-minute and 3-hour counts acquired

from multiple sources such as project study counts, SFMTA, and the Caltrans Performance Measurement

System (PeMS). Since the DTA model validation is for 2010, counts from 2009 to 2011 were used for

validation, and these were further filtered to midweek days (Tuesday, Wednesday and Thursday). Figure 5

maps the locations of the count locations available for validation.

Further documentation and source code for this step are available on the project site23.

As part of the calibration process, numerous parameters were adjusted in order to create a well-converged,

gridlock-free, dynamic assignment where traffic volumes and travel times fit as closely as possible to observed

values. The adjusted parameters include speed-flow parameters such as link speeds, vehicle lengths, vehicle

23 http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_attachCountsFromCountDracula.html

http://dta.googlecode.com/git-history/release-1.0/doc/_build/html/script_attachCountsFromCountDracula.html

